| Министерство образования Российской Федерации
Нижегородский государственный университет
Имени Н.И. Лобачевского
Факультет ВМК
Разложение в ряды Тейлора
отчёт по дисциплине:
Информатика и программирование
Выполнила:
Студентка Репина Инна Сергеевна,
(в/о)
Проверила:
Нижний Новгород
2006
Содержание
1.
Введение……………………………………………………….. стр. 3
2.
Постановка задачи................................................................ стр. 5
3.
Руководство пользователя................................................... стр. 6
4.
Руководство программиста.................................................. стр. 7
5.
Заключение............................................................................ стр. 8
6.
Список литературы .............................................................. стр. 10
7.
Приложение.......................................................................... стр. 11
Введение
Ряд Тейлора – степенной ряд вида:
, (1)
где f
(x
) - функция, имеющая при х
= а
производные всех порядков. Во многих практически важных случаях этот ряд сходится к f
(x
) на некотором интервале с центром в точке а:
(2)
(эта формула опубликована в 1715 Б. Тейлором).
Разность Rn
(x
) = f
(x
) - Sn
(x
),
где Sn
(x
) - сумма первых n
+ 1 членов ряда (1), называется остаточным членом Т. р. Формула (2) справедлива, если
. Т. р. можно представить в виде
,
применимом и к функциям многих переменных.
При а
= 0 разложение функции в Т. р. принимает вид:
,
в частности:
(3)
(4)
(5)
(6)
.(7)
Ряд (3), являющийся обобщением на случай дробных и отрицательных показателей формулы бинома Ньютона, сходится: при -1< х
< 1, если m
< -1; при -1< x £ 1, если -1< m
< 0; при -1 £ x £ 1, если m
> 0.
Ряды (4), (5) и (6) сходятся при любых значениях х,
ряд (7) сходится при -1< x £ 1.
Функция f
(z
) комплексного переменного z,
регулярная в точке а,
раскладывается в Т. р. по степеням z
- а
внутри круга с центром в точке я и с радиусом, равным расстоянию от а
до ближайшей особой точки функции f
(z
).
Вне этого круга Т. р. расходится, поведение же его на границе круга сходимости может быть весьма сложным. Радиус круга сходимости выражается через коэффициенты Т. р.
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
Т. р. является мощным аппаратом для исследования функций и для приближённых вычислений. Пэтому данная работа посвящена именно ему.
Постановка задачи
Задача заключается в том, чтобы посчитать через ряд Тейлора функцию и сравнить её значение с значением стандартной функции в паскале.
Предлагается рассмотреть три функции: sin, cos и exp.
Для каждой из них существует разложение в ряд Тейлора.
Разложения:
1. 
2. 
3. 
Бесконечно малыми пренебрежем.
Руководство пользователя
1. Запускаем программу.
На экране появляется главное меню:
1 – sin x
2 – cos x
3 – exp x
4 – Выход
2. Выбираем функцию: синус, косинус или экспонент.
3. Вводим аргумент.
4. Вводим количество слагаемых.
5. Получаем результат и точность в вычислении.
Примечание
Под точностью понимается количество членов ряда.
 Главное меню
Руководство программиста
В программе используются переменные процедурного типа.
Точнее, мы присваиваем переменной процедуру, проверяем корректность заданного параметра и потом с помощью переменной процедурного типа вычисляем пошагово в цикле очередной член ряда и прибавляем его к сумме.
В программе функциям передаются следующие параметры: аргумент, точность вычислений (число членов ряда) и переменная процедурного типа, указывающая на функцию, которая возвращает новый член ряда. Функции вычисляют новый член ряда на основе аргумента и номера члена. В функции не передаётся предыдущий член ряда, поскольку результат выполнения этих функций домножается на предыдущий член ряда. Заключение
При большом количестве членов ряда (начиная с 10-14 для разных рядов) погрешность в вычислениях становится настолько мала, что иногда округляется до нуля. При стремлении числа слагаемых в бесконечность погрешность стремится к нулю. В результате мы получаем корректный результат при большем количестве членов ряда.
В результате данной работы была написана программа и были проведены эксперементы, результатами которых явилось:
1.
 Sin x
2.
Cos x

3.
Exp
X
 Список литературы
1. Л.Д. Кудрявцев «Курс математического анализа»
2. В.Г. Абрамов, Н.П. Трифонов, Г.Н. Трифонова «Введение в язык Паскаль».
Приложение
program teylor;
uses
SysUtils;
var a,x,sum: real;
n,i,answ: integer;
begin
writeln ('Viberite funkciyu');
writeln ('1-sinx');
writeln ('2-cosx');
writeln ('3-expx');
writeln ('4-Vihod');
readln (answ);
writeln ('Vvedite argument i kolichestvo slagaemih');
readln (x,n);
case answ of
1: begin
a:=x;
sum:=a;
for i:=1 to n do
begin
a:=a*(-1)*x*x/(2*i*(2*i+1));
sum:=sum+a;
writeln (i, sum);
end;
writeln ('Pogreshnost', abs(sin(x)-sum));
end;
2: begin
a:=1;
sum:=1;
for i:=1 to n do
begin
a:=a*(-1)*x*x/((2*i)*(2*i-1));
sum:=sum+a;
writeln (i, sum);
end;
writeln ('Pogreshnost', abs(cos(x)-sum));
end;
3: begin
a:=1;
sum:=1;
for i:=1 to n do
begin
a:=a*x/i;
sum:=sum+a;
writeln (i, sum);
end;
writeln ('Pogreshnost', abs(exp(x)-sum));
Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:
— Разгрузит мастера, специалиста или компанию;
— Позволит гибко управлять расписанием и загрузкой;
— Разошлет оповещения о новых услугах или акциях;
— Позволит принять оплату на карту/кошелек/счет;
— Позволит записываться на групповые и персональные посещения;
— Поможет получить от клиента отзывы о визите к вам;
— Включает в себя сервис чаевых.
Для новых пользователей первый месяц бесплатно.
Зарегистрироваться в сервисе
end;
end{case};
readln;
end.
|