Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Полярные диаграммы и энергетические уровни волновых функций жесткого ротатора

Название: Полярные диаграммы и энергетические уровни волновых функций жесткого ротатора
Раздел: Рефераты по химии
Тип: реферат Добавлен 01:03:55 04 марта 2010 Похожие работы
Просмотров: 11 Комментариев: 24 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

.

Энергетические уровни жесткого ротатора и его спектр

Поскольку квадрат момента импульса в жестком ротато­ре однозначно связан с энергией (4.47), формула (4.101) позволяет легко рассчитать его уровни и спектральные термы (Т ), т.е. уровни, вы­раженные в единицах измерения волнового числа (см–1 ) , являющегося характеристикой излучения

(4.105)

. (4.105)

(4.107)

Величина В, определяемая (4.107), называется вращательной постоянной ротатора.

4.3.7.2. Обозначим величину и составим таблицу 4.5 воз­можных значений энергии жесткого ротатора, а на рис. 4.5. предста­вим его энергетическую диаграмму.

4.3.7.3. Подобно плоскому ротатору, энергетическая диаграмма жесткого ротатора демонстрирует расходящуюся систему уровней, одна­ко значительно возрастает кратность вырождения. Расстояния между соседними уровнями увеличиваются с ростом квантового числа l, причем они линейно связаны с квантовым числом нижнего уровня l:

. (4.108)

Таблица 4.5.

Уровни жесткого ротатора

l Символ уровня

Энергия

Е,

Вырождение

g=2l+1

0 S 0 1
1 P 2 3
2 D 6 5
3 F 12 7
4 G 20 9

Рис. 4.5. Энергетическая диаграмма жесткого ротатора.

Для жесткого ротатора, например, двухатомной молекулы, разрешены спектральные переходы между соседними уровнями . Поэтому, согласно уравнению 4.108, ее спектр пред­ставляет собой набор линий, отстоящих друг от друга на примерно одинаковую величину, равную в энергетической шкале, или 2В в шкале волновых чисел .

Поскольку вращательная постоянная связана с моментом инерции, изучение вращательных спектров молекул даёт возможность эксперимен­тального определения момента инерции молекул и, следовательно, меж­атомных расстояний.

4.3.3. Волновые функции жёсткого ротатора

4.3.8.1. Использование операторов сдвигов состояний позволяет также максимально просто найти собственные функций операторов и без каких-либо специальных сведений о дифференциаль­ных уравнениях. Авторы сознательно построили настоящий раздел в расчёте на внимательного читателя-химика, владеющего лишь мини­мальными, но достаточно прочными навыками в области тригонометрии и математического анализа.

4.3.8.2. Прежде всего, выпишем операторы повышения и понижения в сферических координатах, используя формулы (4.53) и (4.54):

(4.109)

В силу того, что собственные функции, получающиеся в результате действия операторов сдвига, подлежат нормировке, как это уже об­суждалось в разделе 4.3.5.10., мы имеем все основания определить эти операторы с точностью до постоянного множителя, т.е. вместо (4.109) ограничимся выражением

(4.110)

4.3.8.3. Исходные уравнения для вывода всей цепочки волновых функций – уравнения аннигиляции

(4.111)

На основании формул (4.50) и (3.28) функцию мож­но представить в виде

(4.112)

С учётом этого уравнение (4.111) в сферических координатах: запишется в форме

. (4.113)

Совершим очень несложные преобразования, приводя к дифференциальному уравнению для функции:

откуда следует (4.114)

4.3.8.4. Разделяя переменные, получаем

(4.115)

Учтём что ,

(4.116)

Интегрирование уравнения (4.116) даёт

(4.117)

где – постоянная интегрирования, определяемая из условия нормировки. Окончательно получаем формулу для функции

(4.118)

4.3.8.5.Формула (4.118) дает лишь предельные выражения волно­вых функций , отвечающие максимальному и минимальному значе­ниям квантового числа m, а именно и , или что то же самое . Все волновые функции, соответствующие промежуточным значениям очень просто получаются последовательным действием операторов с точностью до нормировочных множителей, которые могут быть рассчитаны в каждом конкретном случае

4.3.8.6.Отметим, что мы не ставим перед собой и перед читате­лем задачу вывода общей формулы сферических волновых функций. Это связано, с одной стороны, с тем, что она обязательно покажется сли­шком перегруженной индексами и коэффициентами, к которым удобнее привыкать постепенно. С другой стороны, для практических целей ред­ко требуются функции с большими значениями квантового числа l. В химическом обиходе встречается состояния с l = 0, 1, 2, 3, по­этому ограничимся этими значениями, (их символы см. в табл. 4.5 ).

4.3.8.7. Итак, нас будут интересовать s–, p–, d–, f– орбитали жесткого ротатора. Запишем соответствующие исходные функции и , с точностью до постоянного множителя:

для s-состояния и

для p- состояния и

для d- состояния и

для f- состояния и

4.3.8.8. Орбиталь s –типа – лишь одна и волновая пункция тре­бует только нормировки. Поскольку сомножитель уже нормирован, достаточно пронормировать функцию . Выделяя из эле­мента конфигурационного пространства (см. рис 4.3) все со­множители, определенные на переменной , получаем

и, соответственно, нормировочное соотношение имеет вид

(4.119)

Во всех дальнейших преобразованиях следующих двух разделов будем опускать постоянные численные коэффициенты перед волновыми функциями, получающимися в результате операций сдвигов состояний над исходными функциями – степенями синусоиды .

4.3.8.9. Квантовое число l=1 порождает три р-функции с m=1, 0, -1 т.е. орбитали с Двум из них с отвечает Нормировочный множитель находим из соотношения

.

Откуда следует: (4.120)

Функцию , необходимую для полного набора р-орбиталей, можно найти, сдвигая вниз или вверх на одно состояние

Определим нормировочный множитель для

Интегрируя с помощью подстановки и, следовательно полагая, получаем

, т.е.

4.3.8.10. Далее получим последовательно d-орбитали, отвечающие набору . Соответственно

(4.121)

(4.121)

(4.122)

Отсюда получаются d-функции

;.

Величины ;; представлены в таблице 4.6.

4.3.8.11. Аналогично получается весь набор f-функций

(4.123)

Все найденные s-, р-, d- и f-орбитали сведём в таблицу 4.6.


Таблица 4.6.

Сферические волновые функции

Уровень l m Символ Y
s 0 0 1 1
p 1 – “ –
0 1 – “ –
d 2 – “ –
– “ –
0 1 – “ –
f 3 – “ –
– “ –
– “ –
0 1 – “ –

Полярные диаграммы волновых функций жесткого ротатора.

4.3.9.1 В разделе 3.2.7. были рассмотрены полярные диаграммы волновых функций плоского ротатора. Они же – графические образа фун­кции сомножителя Теперь проанализируем полярные диаграммы функции для чего будем откладывать на радиус-векторе, исходящем из центра под углом к оси z, значения функции (рис.4.6.).

4.3.9.2. В таблице 4.6 суммированы орбитали жесткого ротатора с комплексными сомножителями которые являются собственными функциями операторов полной энергии, квадрата момента импульса и его проекции на ось z. Однако, графический об­раз комплексных функций недоступен. На рис. 4.7. представлены полярные диаграммы действительных функций , получаемых как линейные комбинации аналогично построенным в разделе 3.2.6 функциям плоского ротатора. При этом, для состояний, описываемых такими действительными функциями утрачивается определенность в значении проекции момента импульса , но сохраняется постоянное значение энергии и модуля момента импульса. Как видно на рис. 4.6 и 4.7, число узловых плоскостей на полярных диаграммах равно квантовому числу l . Анализ знаков волновых функций указывает, что орбитали s- и d- являются четными, а p- и f- нечётными по отношению к операции инверсии.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита05:27:42 04 ноября 2021
.
.05:27:41 04 ноября 2021
.
.05:27:39 04 ноября 2021
.
.05:27:38 04 ноября 2021
.
.05:27:37 04 ноября 2021

Смотреть все комментарии (24)
Работы, похожие на Реферат: Полярные диаграммы и энергетические уровни волновых функций жесткого ротатора

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте