Атомное оружие.
Атомное оружие – самое мощное оружие на сегодняшний день, находящееся на вооружении пяти стран-сверхдежав: России, США, Великобритании, Франции и Китая. Существует также ряд государств, которые ведут более-менее успешные разработки атомного оружия, однако их исследования или не закончены, или эти страны не обладают необходимыми средствами доставки оружия к цели, что делает его бессмысленным. Индия, Пакистан, Северная Корея, Ирак, Иран имеют разработки ядерного оружия на разных уровнях, ФРГ, Израиль, ЮАР и Япония теоретически обладают необходимыми мощностями для создания ядерного оружия в сравнительно короткие сроки.
Трудно переоценить роль ядерного оружия. С одной стороны, это мощное средство устрашения, с другой – самый эффективный инструмент укрепления мира и предотвращения военного конфликтами между державами, которые обладают этим оружием. С момента первого применения атомной бомбы в Хиросиме прошло 52 года. Мировое сообщество близко подошло к осознанию того, что ядерная война неминуемо приведет к глобальной экологической катастрофе, которая сделает дальнейшее существование человечества невозможным. В течение многих лет создавались правовые механизмы, призванные разрядить напряженность и ослабить противостояние между ядерными державами. Так например, было подписано множество договоров о сокращении ядерного потенциала держав, была подписана Конвенция о Нераспространении Ядерного Оружия, по которой страны-обладателя обязались не передавать технологии производства этого оружия другим странам, а страны, не имеющие ядерного оружия, обязались не предпринимать шагов для его разработки; наконец, совсем недавно сверхдержавы договорились о полном запрещении ядерных испытаний. Очевидно, что ядерное оружие является важнейшим инструментом, который стал регулирующим символом целой эпохи в истории международных отношений и в истории человечества.
Современные атомные бомбы и снаряды.
В зависимости от мощности атомного заряда атомные бомбы, снаряды делят на калибры: малый, средний и крупный. Чтобы получить энергию, равную энергии взрыва атомной бомбы малого калибра, нужно взорвать несколько тысяч тонн тротила. Тротиловый эквивалент атомной бомбы среднего калибра составляет десятки тысяч, а бомбы крупного калибра – сотни тысяч тонн тротила. Еще большей мощностью может обладать термоядерное (водородное) оружие, его тротиловый эквивалент может достигать миллионов и даже десятков миллионов тонн.
Атомные бомбы, тротиловый эквивалент которых равен 1- 50 тыс. т, относят к классу тактических атомных бомб и предназначают для решения оперативно-тактических задач. К тактическому оружию относят также артиллерийские снаряды с атомным зарядом мощность 10 – 15 тыс. т. и атомные заряды (мощностью около 5 – 20 тыс. т) для зенитных управляемых снарядов и снарядов, используемых для вооружения истребителей. Атомные и водородные бомбы мощностью свыше 50 тыс. т относят к классу стратегического оружия.
Нужно отметить, что подобная классификация атомного оружия является лишь условной, поскольку в действительности последствие применения тактического атомного оружия могут быть не меньшими, чем те, которые испытало на себе население Хиросимы и Нагасаки, а даже большими.
Сейчас очевидно, что взрыв только одной водородной бомбы способен вызвать такие тяжелые последствия на огромных территориях, каких не несли с собой десятки тысяч снарядов и бомб, применявшихся в прошлых мировых войнах. А нескольких водородных бомб вполне достаточно, чтобы превратить в зону пустыни огромные территории.
Ядерное оружие подразделяется на 2 основных типа: атомное и водородное (термоядерное). В атомном оружии выделение энергии происходит за счет реакции деления ядер атомов тяжелых элементов урана или плутония. В водородном оружии энергия выделяется в результате образования (или синтеза) ядер атомов гелия из атомов водорода. Виды термоядерного оружия будут рассмотрены ниже.
Современное термоядерное оружие.
Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках.
В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород – дейтерий, ядра которого имеют необычную структуру – один протон и один нейтрон. При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия. Результатом этого процесса и становится выделения энергии.
Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии (для поддержания из жидкостного агрегатного состояния). Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес (более 60 т.), из-за чего нельзя было и думать об использовании таких зарядов на стратегических бомбардировщиках, а уж тем более в баллистических ракетах любой дальности. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение.
В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах.
Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно-урановая бомба, а также некоторые ее разновидности – сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы, которая будет описана ниже.
Чистая водородная бомба.
Первые разработки этой модификации термоядерной бомбы появились еще в 1957 году, на волне пропагандистских заявлений США о создании некоего «гуманного» термоядерного оружия, которое не несет столько вреда для будущих поколений, сколько обычная термоядерная бомба. В претензиях на «гуманность» была доля истины. Хотя разрушительная сила бомбы не была меньшей, в то же время она могла быть взорвана так, чтобы не распространялся стронций-90, который при обычном водородном взрыве в течение длительного времени отравляем земную атмосферу. Все, что находится в радиусе действия подобной бомбы, будет уничтожено, однако опасность для живых организмов, которые удалены от взрыва, а также для будущих поколений, уменьшится.
Однако данные утверждения были опровергнуты учеными, которые напомнили, что при взрывах атомных или водородных бомб образуется большое количество радиоактивной пыли, которая поднимается мощным потоком воздуха на высоту до 30 км, а потом постепенно оседает на землю на большой площади, заражая её. Исследования, проведенные учеными, показывают, что понадобится от 4 до 7 лет, чтобы половина этой пыли выпала на землю.
Атом и экология.
Долгое время существовала угроза нанесения большого вреда экологии нашей планеты за счет выброса радиоактивных веществ при ядерных испытаниях (главным образом при атмосферных) испытаниях. Необходимо учитывать, что количество веществ, образующихся при взрыве, зависит от калибра бомбы. Установлено, что радиоактивное заражение в основном определяется «осколками» деления ядер вещества, составляющего заряд бомб – урана или плутония. У современных водородных бомб, работающих по схеме: расщепление – ядерное соединение – расщепление, образуется огромное количество т.н. «осколков» деления. Часть из них возникает при взрыве атомного детонатора и большая часть – при расщеплении урановой оболочки. В результате некоторое количество радиоактивных веществ образуется в земле, воде и окружающих предметах.
Количество радиоактивных веществ, выпадающих на землю, зависит и от вида взрыва – воздушный, наземный, подводный, подземный (в двух последних случаях загрязнение земли минимально). Само собой разумеется, что ни о каком влиянии на выпадение радиоактивных элементов на землю при космических взрывах говорить не приходится. Наибольшее количество радиоактивных веществ выпадает при наземном взрыве, особенно в районе взрыва. Метеоусловия играют также важную роль: Китай в свое время проводил наземные и атмосферные ядерные испытания в непосредственной близости от границы с СССР (Киргизией) в те моменты, когда ветер имел направление в сторону СССР. Таким образом, облака радиоактивной пыли относились ветром вглубь нашей территории, и выпадавшая из них пыль рассеивалась уже на ней.
Из всех радиоактивных веществ, выпадавших на землю, наиболее опасным являлся стронций-90, период полураспада которого равен 25 годам. Попадая внутрь организма человека или животных в виде пыли, стронций, подобно кальцию, отлагается в костных тканях, что в последствие приводит к появлению опухолей различных типов и тяжести.
В этой связи трудно переоценить роль договора о запрещении ядерных испытаний в трех сферах (на земле, под водой и в космосе), подписанного держававами-обладателями ядерного оружия. Совсем недавно, после того как Франция закончила свои испытания на атолле Морророа в Тихом океане, все 5 сверх держав, обладающие ядерным оружием, заявили о полном прекращении ядерных испытаний. Это было достигнуто в значительной степени благодаря осознанию той страшной угрозы, которую несет в себе продолжение испытаний ядерного оружия, а также благодаря созданию технологий компьютерного моделирования ядерных взрывов.
Воздействие
атомного оружия.
Поражающее действие ядерного взрыва определяется механическим воздействием ударной волны, тепловым воздействием светового излучения, радиационным воздействием проникающей радиации и радиоактивного заражения. Для некоторых элементов объектов поражающим фактором является электромагнитное излучение (электромагнитный импульс) ядерного взрыва.
Распределение энергии между поражающими факторами ядерного взрыва зависит от вида взрыва и условий, в которых он происходит. При
взрыве в атмосфере примерно 50 % энергии взрыва расходуется на образование ударной волны, 30—40%— на световое излучение, до 5 % — на проникающую радиацию и электромагнитный импульс и до 15 %—на радиоактивное заражение.
Для нейтронного взрыва характерны те же поражающие факторы, однако несколько по-иному распределяется энергия взрыва: 8—10%—на образование ударной волны, 5—8 % — на световое излучение и около 85 % расходуется на образование нейтронного и гамма-излучений (проникающей радиации).
Действие поражающих факторов ядерного взрыва на людей и элементы объектов происходит не одновременно и различается по длительности воздействия, характеру и масштабам поражения.
Ударнаяволна—это область резкого сжатия среды, которая в виде сферического слоя распространяется во все стороны от места взрыва со сверхзвуковой скоростью. В зависимости от среды распространения различают ударную волну в воздухе, в воде или грунте (сейсмовзрывные волны).
Ударная волна в воздухе образуется за счет колоссальной энергии, выделяемой в зоне реакции, где исключительно высокая температура, а давление достигает миллиардов атмосфер (до 105
млрд. Па). Раскаленные пары и газы, стремясь расшириться, производят резкий удар по окружающим слоям воздуха, сжимают их до больших давления и плотности и нагревают до высокой температуры. Эти слои воздуха приводят в движение последующие слои. И так сжатие и перемещение воздуха происходит от одного слоя к другому во все стороны от центра взрыва, образуя воздушную ударную волну. Расширение раскаленных газов происходит в сравнительно малых объемах, поэтому их действие на более заметных удаленьях от центра ядерного взрыва исчезает и основным носителем действия взрыва становится воздушная ударная волна. Вблизи центра взрыва скорость распространения ударной волны в несколько раз превышает скорость звука в воздухе. С увеличением расстояния от места взрыва скорость распространения волны быстро падает, а ударная волна ослабевает; на больших удаленьях ударная волна переходит, по существу, в обычную акустическую волну и скорость ее распространения приближается к скорости звука в окружающей среде, т. е. к 340 м/с. Воздушная ударная волна при ядерном взрыве средней мощности проходит примерно 1000 м за 1,4 с, 2000 м—за 4 с. 3000 м—за 7с, 5000 м—за 12 с. Отсюда следует, что человек, увидев вспышку ядерного взрыва, за время до прихода ударной волны, может занять ближайшее укрытие (складку местности, канаву, кювет, простенок и т. п.)и тем самым уменьшить вероятность поражения ударной волной.
Ударная волна в воде при подводном ядерном взрыве качественно напоминает ударную волну в воздухе. Однако подводная ударная волна отличается от воздушной ударной волны своими параметрами. На одних и тех же расстояниях давление во фронте ударной волны в воде гораздо больше, чем в воздухе, а время действия—меньше. Например, максимальное избыточное давление на расстоянии 900 м от центра ядерного взрыва мощностью 100 кт в глубоком водоеме составляет 19000 кПа, а при взрыве в воздушной среде—около 100 кПа.
При наземном ядерном взрыве часть энергии взрыва расходуется на образование волны сжатия в грунте. В отличие от ударной волны в воздухе она характеризуется менее резким увеличением давления во фронте волны, а также более медленным его ослаблением за фронтом. Давление во фронте волны сжатия уменьшается довольно быстро с удалением от центра взрыва, и на больших расстояниях волна сжатия становится подобной сейсмической волне.
При взрыве ядерного боеприпаса в грунте основная часть энергии взрыва передается окружающей массе грунта и производит мощное сотрясение грунта, напоминающее по своему действию землетрясение.
Характер воздействия ударной волны на людей и животных.
Ударная волна может нанести незащищенным людям и животным травматические поражения, контузии или быть причиной их гибели. Поражения могут быть непосредственными или косвенными.
Непосредственное поражение ударной волной возникает в результате воздействия избыточного давления и скоростного напора воздуха. Ввиду небольших размеров тела человека ударная волна почти мгновенно охватывает человека и подвергает его сильному сжатию. Процесс сжатия продолжается со снижающейся интенсивностью в течение всего периода фазы сжатия, т. е. в течение нескольких секунд. Мгновенное повышение давления в момент прихода ударной волны воспринимается живым организмом как резкий удар. В то же самое время скоростной напор создает значительное лобовое давление, которое может привести к перемещению тела в пространстве.
Косвенные поражения люди и животные могут получить в результате ударов обломками разрушенных зданий и сооружений или в результате ударов летящих с большой скоростью осколков стекла, шлака, камней, дерева и других предметов. Например, при избыточном давлении во фронте ударной волны 35 кПа плотность летящих осколков достигает 3500 шт. на квадратный метр при средней скорости перемещения этих предметов 50 м/с.
Характер и степень поражения незащищенных людей и животных зависят от мощности и вида взрыва, расстояния, метеоусловий, а также от места нахождения (в здании, на открытой местности) и положения (лежа, сидя, стоя) человека.
Воздействие воздушной ударной волны на незащищенных людей характеризуется легкими, средними, тяжелыми и крайне тяжелыми травмами.
Крайне тяжелые контузии и травмыу людей возникают при избыточном давлении более 100 кПа (1 кгс/см2
). Отмечаются разрывы внутренних органов, переломы костей, внутренние кровотечения, сотрясение мозга, длительная потеря сознания. Разрывы наблюдаются в органах, содержащих большое количество крови (печень, селезенка, почки), наполненных газом (легкие, кишечник) или имеющие полости, наполненные жидкостью (желудочки головного мозга, мочевой и желчный пузыри). Эти травмы могут привести к смертельному исходу.
Тяжелые контузии и травмы возможны при избыточных давлениях от 60 до 100 кПа (от 0,6 до 1,0 кгс/см2
). Они характеризуются сильной контузией всего организма, потерей сознания, переломами костей, кровотечением из носа и ушей; возможны повреждения внутренних органов и внутренние кровотечения.
Поражения средней тяжести возникают при избыточном давлении 40— 60 кПа (0,4—0,6 кгс/см2
). При этом могут быть вывихи конечностей, контузия головного мозга, повреждение органов слуха, кровотечение из носа и ушей.
Легкие поражения наступают при избыточном давлении 20—40 кПа (0,2—0,4 кгс/см2
). Они выражаются в скоропроходящих нарушениях функций организма (звон в ушах, головокружение, головная боль). Возможны вывихи, ушибы.
Избыточные давления во фронте ударной волны 10 кПа (0,1 кгс/см2
) и менее для людей и животных, расположенных вне укрытий, считаются безопасными.
Радиус поражения обломками зданий, особенно осколками стекол, разрушающихся при избыточном давлении более 2 кПа (0,02 кгс/см2
) может превышать радиус непосредственного поражения ударной волной.
Гарантированная защита людей от ударной волны обеспечивается при укрытии их в убежищах. При отсутствии убежищ используются противорадиационные укрытия, подземные выработки, естественные укрытия и рельеф местности.
Механическое воздействие ударной волны.
Характер разрушения элементов объекта (предметов) зависит от нагрузки, создаваемой ударной волной, и реакции предмета на действие этой нагрузки.
Общую оценку разрушений, вызванных ударной волной ядерного взрыва, принято давать по степени тяжести этих разрушений. Для большинства элементов объекта, как правило, рассматриваются три степени—слабое, среднее и сильное разрушение. Для жилых и промышленных зданий берется обычно четвертая степень— полное разрушение. При слабом разрушении, как правило, объект не выходит из строя; его можно эксплуатировать немедленно или после незначительного (текущего) ремонта. Средним разрушением обычно называют разрушение главным образом второстепенных элементов объекта. Основные элементы могут деформироваться и повреждаться частично. Восстановление возможно силами предприятия путем проведения среднего или капитального ремонта. Сильное разрушение объекта характеризуется сильной деформацией или разрушением его основных элементов, в результате чего объект выходит из строя и не может быть восстановлен.
Применительно к гражданским и промышленным зданиям степени разрушения характеризуются следующим состоянием конструкции.
Слабое разрушение.
Разрушаются оконные и дверные заполнения и легкие перегородки, частично разрушается кровля, возможны трещины в стенах верхних этажей. Подвалы и нижние этажи сохраняются полностью. Находиться в здании безопасно и оно может эксплуатироваться после проведения текущего ремонта.
Среднее разрушение проявляется в разрушении крыш и встроенных элементов— внутренних перегородок, окон, а также в возникновении трещин в стенах, обрушении отдельных участков чердачных перекрытий и стен верхних этажей. Подвалы сохраняются. После расчистки и ремонта может быть использована часть помещений нижних этажей. Восстановление зданий возможно при проведении капитального ремонта.
Сильное разрушение характеризуется разрушением несущих конструкций и перекрытий верхних этажей, образованием трещин в стенах и деформацией перекрытий нижних этажей. Использование помещений становится невозможным, а ремонт и восстановление чаще всего нецелесообразным.
Полное разрушение.
Разрушаются все основные элементы здания, включая и несущие конструкции. Использовать здания невозможно. Подвальные помещения при сильных и полных разрушениях могут сохраняться и после разбора завалов частично использоваться.
Наибольшие разрушения получают наземные здания, рассчитанные на собственный вес и вертикальные нагрузки, более устойчивы заглубленные и подземные сооружения. Здания с металлическим каркасом средние разрушения получают при 20—40 кПа, а полные—при 60—80 кПа, здания кирпичные—при 10—20 и 30—40, здания деревянные— при 10 и 20 кПа соответственно. Здания с большим количеством проемов более устойчивы, так как в первую очередь разрушаются заполнения проемов, а несущие конструкции при этом испытывают меньшую нагрузку. Разрушение остекления в зданиях происходит при 2—7 кПа.
Объем разрушений в городе зависит от характера строений, их этажности и плотности застройки. При плотности застройки 50 % давление ударной волны на здания может быть меньше (на 20—40 %), чем на здания, стоящие на открытой местности, на таком же расстоянии от центра взрыва. При плотности застройки менее 30 % экранирующее действие зданий незначительно и не имеет практического значения.
Разрушение транспортных средств.
Средства транспорта от ударной волны, как правило, опрокидываются и получают большие повреждения. Загруженные и закрепленные средства транспорта имеют меньшую степень повреждения. Более устойчивыми элементами являются двигатели. Например, при сильных повреждениях двигатели автомашин повреждаются незначительно, и машины способны двигаться своим ходом.
Наиболее устойчивы к воздействию ударной волны морские и речные суда и железнодорожный транспорт. При воздушном или надводном взрыве повреждение судов будет происходить главным образом под действием воздушной ударной волны. Поэтому повреждаются в основном надводные части судов—палубные надстройки, мачты, радиолокационные антенныи т. д. Котлы, вытяжные устройства и другое внутреннее оборудование повреждаются затекающей внутрь ударной волной. Транспортные суда получают средние повреждения при давлениях 60—80 кПа. Железнодорожный подвижной состав может эксплуатироваться после воздействия избыточных давлений: вагоны—до 40 кПа, тепловозы—до 70 кПа (слабые разрушения).
Самолеты—
более уязвимые объекты, чем остальные транспортные средства. Нагрузки, создаваемые избыточным давлением 10 кПа, достаточны для того, чтобы образовались вмятины в обшивке самолета, деформировались крылья и стрингеры, что может привести к временному снятию с полетов.
Световое излучение.
По своей природе световое излучение ядерного взрыва — совокупность видимого света и близких к нему по спектру ультрафиолетовых и инфракрасных лучей. Источник светового излучения — светящаяся область взрыва, состоящая из нагретых до высокой температуры веществ ядерного боеприпаса, воздуха и грунта (при наземном взрыве). Температура светящейся области в течение некоторого времени сравнима с температурой поверхности солнца (максимум 8000—10000 и минимум 1800 °С). Размеры светящейся области и ее температура быстро изменяются во времени. Продолжительность светового излучения зависит от мощности и вида взрыва и может продолжаться до десятков секунд. При воздушном взрыве ядерного боеприпаса мощностью 20 кт световое излучение продолжается 3 с, термоядерного заряда 1Мт—10с. Поражающее действие светового излучения характеризуется световым импульсом. Световым импульсом называется отношение количества световой энергии к площади освещенной поверхности, расположенной перпендикулярно распространению световых лучей. Единица светового импульса — джоуль на квадратный метр (Дж/м2
) или калория на квадратный сантиметр (кал/см2
). 1 Дж/м2
=23,9* 10-6кал/см2
;
1 кДж/м2= 0,0239 кал/см2
; 1 кал/см2
= 40 кДж/м2
. Световой импульс зависит от мощности и вида взрыва, расстояния от центра взрыва и ослабления светового излучения в атмосфере, а также от экранирующего воздействия дыма, пыли, растительности, неровностей местности и т.д.
При наземных и надводных взрывах световой импульс на тех же расстояниях меньше, чем при воздушных взрывах такой же мощности. Это объясняется тем, что световой импульс излучает полусфера, хотя и большего диаметра, чем при воздушном взрыве. Что касается распространения светового излучения, то большое значение имеют другие факторы. Во-первых, часть светового излучения поглощается слоями водяных паров и пыли непосредственно в районе взрыва. Во-вторых, большая часть световых лучей прежде, чем достичь объекта на поверхности земли, должна будет пройти воздушные слои, расположенные близко к земной поверхности. В этих наиболее насыщенных слоях атмосферы происходит значительное поглощение светового излучения молекулами водяных паров и двуокиси углерода; рассеяние в результате наличия в воздухе различных частиц здесь также гораздо большее. Кроме того, необходимо учитывать рельеф местности. Количество световой энергии, достигающей объекта, находящегося на определенном расстоянии от наземного взрыва, может составлять для малых расстояний порядка трех четвертей, а на больших—половину импульса при воздушном взрыве такой же мощности.
При подземных или подводных взрывах поглощается почти все световое излучение.
При ядерном взрыве на большой высоте рентгеновские лучи, излучаемые исключительно сильно нагретыми продуктами взрыва, поглощаются большими толщами разреженного воздуха. Поэтому температура огненного шара (значительно больших размеров, чем при воздушном взрыве) ниже. Для высот порядка 30—100 км на световой импульс расходуется около 25— 35 % всей энергии взрыва.
Радиоактивное заражение.
Основные источники радиоактивности при ядерных взрывах: продукты деления веществ, составляющих ядерное горючее (200 радиоактивных изотопов 36 химических элементов); наведенная активность, возникающая в результате воздействия потока нейтронов ядерного взрыва на некоторые химические элементы, входящие в состав грунта (натрий, кремний и др.); некоторая часть ядерного горючего, которая не участвует в реакции деления и попадает в виде мельчайших частиц в продукты взрыва.
Излучение радиоактивных веществ состоит из трех видов лучей: альфа, бета и гамма. Наибольшей проникающей способностью обладают гамма-лучи (в воздухе они проходят путь в несколько сот метров), меньшей—бета-частицы (несколько метров) и незначительной — альфа-частицы (несколько сантиметров). Поэтому основную опасность для людей при радиоактивном заражении местности представляют гамма- и бета-излучения.
Радиоактивное заражение имеет ряд особенностей, отличающих его от других поражающих факторов ядерного взрыва. К ним относятся: большая площадь поражения — тысячи и десятки тысяч квадратных километров; длительность сохранения поражающего действия — дни, недели, а иногда и месяцы; трудности обнаружения радиоактивных веществ, не имеющих цвета, запаха и других внешних признаков.
Муниципальное общеобразовательное учреждение
«Средняя школа № 42»
Современные средства поражения.
Атомное оружие.
Реферат по обж
подготовил:
Иванов Иван Иванович
Проверил: Материо Г.Л
|
Энгельс
2008
Содержание.
1. Атомное оружие.
2. Современные атомные бомбы и снаряды.
3. Современные термоядерные бомбы и снаряды.
4. «Чистая» водородная бомба.
5. Атом и экология.
6. Воздействие атомного взрыва.
6.1.Ударная волна в воздухе.
6.2.Ударная волна в воде.
6.3.Ударная волна на земле.
7. Воздействие ударной волны на людей и животных.
8. Механическое воздействие ударной волны.
8.1. Слабое разрушение.
8.2. Среднее разрушение.
8.3.Силное разрушение.
8.4.Полное разрушение.
9. Разрушение транспортных средств.
10. Световое излучение.
11. Радиоактивное излучение.
12. Список литературы.
Список литературы.
1.Афина.Е.И. Большая школьная энциклопедия М. : Русское энциклопедическое товарищество, 2003 г.
2.www.wikipedia.ru.
3. Громов.С.В. Физика 11 класс М.: «Просвещение», 2001 г.
4. Фролов.М.П. Смирнов.А.Т. Основы безопасности жизнедеятельности,
М.: «АСТ», 2005 г.
|