МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Чувашский государственный университет им. И. Н. Ульянова
КУРСОВАЯ РАБОТА
по вычислительной математике.
Вычисление двойных интегралов методом ячеек.
Выполнил студент
факультета ИиВТ,
группа ИВТ-11-00
Борзов Леонид
Чебоксары-2002
Содержание.
Теоретическая часть…………………………………………3
Задание………………………………………………………..4
Текст программы. ……………………………………………5
Блок-схема программы…………………….………………...6
Выполнение программы в математическом пакете………..7
Список использованной литературы……………………......8
Теоретическая часть.
Численные методы могут использоваться для вычисления кратных интегралов. Ограничимся рассмотрением двойных интегралов вида
I
=
(1)
Одним из простейших способов вычисления этого интеграла является метод ячеек
. Рассмотрим сначала случай, когда областью интегрирования G является прямоугольник: , .По теореме о среднем найдём среднее значение функции f
(
x
,
y
)
:
S
=(
b
-
a
)(
d
-
c
).
(2)
Будем считать, что среднее значение приближённо равно значению функции в центре прямоугольника, т. е. . Тогда из (2) получим выражение для приближённого вычисления двойного интеграла:
(3)
Точность этой формулы можно повысить, если разбить область G на прямоугольные ячейки Dij
(рис. 1): xi
-1
i
(i
=1,2,…,M), yi
-1
i
(j
=1,2,…,N). Применяя к каждой ячейке формулу (3), получим
òòD
Gij
f
(
x
,
y
)
dxdy
»
¦
(
)
D
xi
D
yi
.
Суммируя эти выражения по всем ячейкам, находим значение двойного интеграла:
I
,
j
)
(4)
В правой части стоит интегральная сумма; поэтому при неограниченном уменьшении периметров ячеек (или стягивания их в точки) эта сумма стремится к значению интеграла для любой непрерывной функции f
(
x
,
y
)
.
Можно показать, что погрешность такого приближения интеграла для одной ячейки оценивается соотношением
Rij
»
D
xi
D
yj
.
Суммируя эти выражения по всем ячейкам и считая все их площади одинаковыми, получаем оценку погрешности метода ячеек в виде
O
(
D
x
2
+
D
y
2
)
.
Таким образом, формула (4) имеет второй порядок точности. Для повышения точности можно использовать обычные методы сгущения узлов сетки. При этом по каждой переменной шаги уменьшают в одинаковое число раз, т. е. отношение M
/
N
остаётся постоянным.
Если область G непрямоугольная, то в ряде случаев её целесообразно привести к прямоугольному виду путём соответствующей замены переменных. Например, пусть область задана в виде криволинейного четырёхугольника: , . Данную область можно привести к прямоугольному виду с помощью замены , . Кроме того, формула (4) может быть обобщена и на случай более сложных областей.
Задание
.Найти при помощи метода ячеек значение интеграла , где – область, ограниченная функциями .
Текст программы.
#include<conio.h>
#include<iostream.h>
float f(float,float);
void main() {
const float h1=.0005,h2=.001;
float s1,x,y,i,I;
clrscr();
s1=h1*h2;
I=0;
y=h2/2;
x=1-h1/2;
for(i=0;i<1/h2;i++) {
while (y<2*x-1) {
I+=s1*f(x,y);
x-=h1;
}
y+=h2;
x=1-h1/2;
}
cout<<"Площадь интеграла равна: "<<I;
getch();
}
float f(float x,float y){
return x*x+y*y;
}
Блок-схема программы.
Выполнение программы в математическом пакете.
h1=.0005;
h2=.001;
s1=h1*h2;
I=0;
y=h2/2;
x=1-h1/2;
for i=1:1/h2
while y<2*x-1 I=I+s1*(x*x+y*y);
x=x-h1;
end
y=y+h2;
x=1-h1/2;
end
disp('Площадь интеграла равна:');
disp(I);
В зависимости от шагов сетки получаем с различной точностью значение искомого интеграла
Площадь интеграла равна:
0.2190
Список использованной литературы.
1. Бахвалов Н.С. Численные методы. т.1 – М.: Наука. 1975.
2. Демидович Б.П., Марон И.А. Основы вычислительной математики. – М.: Наука, 1966.
3. Калиткин Н.Н Численные методы. – М.: Наука, 1978.
4. Турчак Л. И. Основы численных методов. – М.: Наука, 1987.
|