ФГОУ ВПО ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ
Кафедра информатики и информационного обеспечения
Реферат на тему:
« ПОКОЛЕНИЕ ЭВМ»
Выполнил
: студент 11 группы
специальности « Электрификация и автоматизация с/х»
Лукьянов Александр
Проверил
: преподаватель Чернышова С.В.
ОРЕНБУРГ 2010
ОГЛАВЛЕНИЕ:
1. Поколение ЭВМ
2. Классификация современных компьютеров по функциональным возможностям
3. Основные виды ЭВМ
Поколение ЭВМ
История компьютера тесным образом связана с попытками облегчить и автоматизировать большие объемы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже в древности появилось простейшее счетное устройство - абак. В семнадцатом веке была изобретена логарифмическая линейка, облегчающая сложные математические расчеты. В 1642 году Блез Паскаль сконструировал восьмиразрядный суммирующий механизм. Два столетия спустя в 1820 году француз Шарль де Кольмар создал арифмометр, способный производить умножение и деление. Этот прибор прочно занял свое место на бухгалтерских столах. Все основные идеи, которые лежат в основе работы компьютеров, были изложены еще в 1833 году английским математиком Чарльзом Бэббиджем. Он разработал проект машины для выполнения научных и технических расчетов, где предугадал основные устройства современного компьютера, а также его задачи. Управление такой машиной должно было осуществляться программным путем. Для ввода и вывода данных Бэббидж предлагал использовать перфокарты - листы из плотной бумаги с информацией, наносимой с помощью отверстий. В то время перфокарты уже использовались в текстильной промышленности. Отверстия в них пробивались с помощью специальных устройств - перфораторов. Идеи Бэббиджа стали реально воплощаться в жизнь в конце 19 века. В 1888 году американский инженер Герман Холлерит сконструировал первую электромеханическую счетную машину. Эта машина, названная табулятором, могла считывать и сортировать статистические записи, закодированные на перфокартах. В 1890 году изобретение Холлерита было впервые использовано в 11-й американской переписи населения. Работа, которую пятьсот сотрудников выполняли в течение семи лет, Холлерит сделал с 43 помощниками на 43 табуляторах за один месяц. В 1896 году Герман Холлерит основал фирму Computing Tabulating Recording Company, которая стала основой для будущей Интернэшнл Бизнес Мэшинс (International Business Machines Corporation, IBM) - компании, внесшей гигантский вклад в развитие мировой компьютерной техники. Дальнейшие развития науки и техники позволили в 1940-х годах построить первые вычислительные машины. Создателем первого действующего компьютера Z1 с программным управлением считают немецкого инженера Конрада Цузе. В феврале 1944 года на одном из предприятий Ай-Би-Эм (IBM) в сотрудничестве с учеными Гарвардского университета по заказу ВМС США была создана машина "Mark 1". Это был монстр весом около 35 тонн. В "Mark 1" использовались механические элементы для представления чисел и электромеханические - для управления работой машины. Числа хранились в регистрах, состоящих из десятизубных счетных колес. Каждый регистр содержал 24 колеса, причем 23 из них использовались для представления числа (т.е. "Mark 1" мог "перемалывать" числа длинной до 23 разрядов), а одно - для представления его знака. Регистр имел механизм передачи десятков и поэтому использовался не только для хранения чисел; находящееся в одном регистре, число могло быть передано в другой регистр и добавлено к находящемуся там числу(или вычтено из него). Всего в "Mark 1" было 72 регистра и, кроме того, дополнительная память из 60 регистров, образованных механическими переключателями. В эту дополнительную память вручную вводились константы - числа, которые не изменялись в процессе вычислений. Умножение и деление производилось в отдельном устройстве. Кроме того, машина имела встроенные блоки, для вычисления sin x, 10x
и log x. Скорость выполнения арифметических операций в среднем составляла: сложение и вычитание - 0,3 секунды, умножение - 5,7 секунды, деление - 15,3 секунды. Таким образом "Mark 1" был "эквивалентен" примерно 20 операторам, работающим с ручными счетными машинами. Наконец, в 1946 в США была создана первая электронная вычислительная машина (ЭВМ) - ENIAC (Electronic Numerical integrator and Computer - Электронный числовой интегратор и компьютер). Разработчики: Джон Мочи (John Маuchу) и Дж. Преспер Эккерт (J. Prosper Eckert). Он был произведен на свет в Школе электрической техники Moore (при университете в Пенсильвании). Время сложения - 200 мкс, умножения - 2800 мкс и деления - 24000 мкс. Компьютер содержал 17468 вакуумных ламп шестнадцати типов, 7200 кристаллических диодов и 4100 магнитных элементов. Общая стоимость базовой машины - 750000 долларов. Стоимость включала дополнительное оборудование, магнитные модули памяти (по цене 29706,5 доллара) и аренду у IBM (по 82,5 доллара в месяц) устройства считывания перфокарт ( 125 карт в минуту). Она также включала и арендную плату (по 77 долларов в месяц) за IBM-перфоратор (100 карт в минуту). Потребляемая мощность ENIAC - 174 кВт. Занимаемое пространство - около 300 кв. м. В Советском Союзе первая электронная цифровая вычислительная машина была разработана в 1950 году под руководством академика С. А. Лебедева в Академии наук Украинской ССР. Она называлась «МЭСМ» (малая электронная счётная машина). Основоположниками компьютерной науки по праву считаются Клод Шеннон - создатель теории информации, Алан Тьюринг - математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман - автор конструкции вычислительных устройств, которая до сих пор лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, - кибернетика, наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер. Одно время слово "кибернетика" использовалось для обозначения вообще всей компьютерной науки, а в особенности тех ее направлений, которые в 60-е годы считались самыми перспективными: искусственного интеллекта и робототехники. Вот почему в научно-фантастических произведениях роботов нередко называют "киберами". А в 90-е годы это слово опять всплыло для обозначения новых понятий, связанных с глобальными компьютерными сетями - появились такие неологизмы, как "киберпространство", "кибермагазины" и даже "киберсекс".
Первое поколение ЭВМ
Развитие ЭВМ делится на несколько периодов. Поколения ЭВМ каждого периода отличаются друг от друга элементной базой и математическим обеспечением. Первое поколение (1945-1954) - ЭВМ на электронных лампах (вроде тех, что были в старых телевизорах). Это доисторические времена, эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютерных динозавров, которые нередко требовали для себя отдельных зданий, давно стали легендой. Ввод чисел в первые машины производился с помощью перфокарт, а программное управление последовательностью выполнения операций осуществлялось, например в ENIAC, как в счетно-аналитических машинах, с помощью штеккеров и наборных полей. Хотя такой способ программирования и требовал много времени для подготовки машины, то есть для соединения на наборном поле (коммутационной доске) отдельных блоков машины, он позволял реализовывать счетные "способности" ENIAC'а и тем выгодно отличался от способа программной перфоленты, характерного для релейных машин. Солдаты, приписанные к этой огромной машине, постоянно носились вогруг нее, скрипя тележками, доверху набитыми электронными лампами. Стоило перегореть хотя бы одной лампе, как ENIAC тут же вставал, и начиналась суматоха: все спешно искали сгоревшую лампу. Одной из причин - возможно, и не слишком достоверной - столь частой замены ламп считалась такая: их тепло и свечение привлекали мотыльков, которые залетали внутрь машины и вызывали короткое замыкание. Если это правда, то термин "жучки" (bugs), под которым подразумевают ошибки в программных и аппаратных средствах компьютеров, приобретает новый смысл. Когда все лампы работали, инженерный персонал мог настроить ENIAC на какую-нибудь задачу, вручную изменив подключение 6 000 проводов. Все эти провода приходилось вновь переключать, когда вставала другая задача. Первой серийно выпускавшейся ЭВМ 1-го поколения стал компьютер UNIVAC (Универсальный автоматический компьютер). Разработчики: Джон Мочли (John Mauchly) и Дж. Преспер Эккерт (J. Prosper Eckert). Он был первым электронным цифровым компьютером общего назначения. UNIVAC, работа по созданию которого началась в 1946 году и завершилась в 1951-м, имел время сложения 120 мкс, умножения -1800 мкс и деления - 3600 мкс. UNIVAC мог сохранять 1000 слов, 12000 цифр со временем доступа до 400 мкс максимально. Магнитная лента несла 120000 слов и 1440000 цифр. Ввод/вывод осуществлялся с магнитной ленты, перфокарт и перфоратора. Его первый экземпляр был передан в Бюро переписи населения США. Программное обеспечение компьютеров 1-го поколения состояло в основном из стандартных подпрограмм. Машины этого поколения: « ENIAC », «МЭСМ», «БЭСМ», «IBM -701», «Стрела», «М-2», «М-3», «Урал», «Урал-2», «Минск-1», «Минск-12», «М-20» и др. <br > Эти машины занимали большую площадь, использовали много электроэнергии и состояли из очень большого числа электронных ламп. Например, машина «Стрела» состояла из 6400 электронных ламп и 60 тыс. штук полупроводниковых диодов. Их быстродействие не превышало 2—3 тыс. операций в секунду, оперативная память не превышала 2 Кб. Только у машины «М-2» (1958) оперативная память была 4 Кб, а быстродействие 20 тыс. операций в секунду. </br >
Основные технические характеристики ЭВМ "УРАЛ-1"
Структура команд одноадресная. Система счисления двоичная. Способ представления чисел - с фиксированной запятой и с плавающей запятой по стандартным программам. Разрядность-35 двоичных разрядов (10,5 десятичных) и один разряд для знака числа. Диапазон представляемых чисел: от 1 до 10-10.5. Время выполнения отдельных операций: а) деления - 20 мксек; б) нормализации - 20 мсек; в) остальных операций-10 мсек. Количество команд-29. Характеристики ЗУ: емкость ОЗУ на магнитном барабане - 1024 тридцатишестиразрядных числа или команды; емкость НМЛ - до 40 000 тридцатишестиразрядных чисел или 8000 команд. Устройство ввода - на перфорированной киноленте шириной 35 мм. Вывод - печатающее устройство. Скорость печати - 100±10 чисел в минуту. Машина построена на одноламповых типовых ячейках. Питание машины от сети трехфазного переменного тока напряжением 220В ±10%, частотой 50Гц. Потребляемая мощность 7,5 кВт. Занимаемая площадь 50 кв. м.
Второе поколение ЭВМ
ЭВМ 2-го поколения были разработаны в 1950—60 гг. В качестве основного элемента были использованы уже не электронные лампы, а полупроводниковые диоды и транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Второе отличие этих машин — это то, что появилась возможность программирования на алгоритмических языках. Были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров. Программирование, оставаясь наукой, приобретает черты ремесла. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу. Машины этого поколения: «РАЗДАН-2», «IВМ-7090», «Минск-22,-32», «Урал- 14,-16», «БЭСМ-3,-4,-6», «М-220, -222» и др. Применение полупроводников в электронных схемах ЭВМ привели к увеличению достоверности, производительности до 30 тыс. операций в секунду, и оперативной памяти до 32 Кб. Уменьшились габаритные размеры машин и потребление электроэнергии. Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризовали свою бухгалтерию, предвосхищая моду на двадцать лет.
Основные технические характеристики ЭВМ "Урал-16":
Структура команд двухадресная. Система счисления двоичная, Способ представления чисел: с плавающей запятой. Разрядность: 36 двоичных разрядов (мантисса числа — 29 разрядов, знак мантиссы -- 1 разряд, порядок — 5 разрядов, знак порядка — 1 разряд). Быстродействие 5000 операций/с. Количество команд (основных) 17. Каждая операция имеет 8 модификаций. Характеристики запоминающих устройств. Емкость ОЗУ на ферритах 2 К слов; время обращения к ОЗУ 24 мкс, Емкость внешнего НМЛ 120000 чисел; скорость считывания с НМЛ 2000 чисел/с. Устройства ввода — вывода обеспечивают ввод информации в машину с фотосчитывающего устройства на кинолепте со скоростью 35 чисел/с и вывод результатов вычислений на печатающее устройство со скоростью 20 чисел/с. Питание машины от сети переменного тока напряжением 380/220 В, частотой 50 Гц. Потребляемая мощность около 3 кВт. Занимаемая площадь 20 кв. м.
Третье поколение ЭВМ
Разработка в 60-х годах интегральных схем - целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника (то, что сейчас называют микросхемами) привело к созданию ЭВМ 3-го поколения. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. Применение интегральных схем намного увеличило возможности ЭВМ. Теперь центральный процессор получил возможность параллельно работать и управлять многочисленными периферийными устройствами. ЭВМ могли одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации принципа мультипрограммирования появилась возможность работы в режиме разделения времени в диалоговом режиме. Удаленные от ЭВМ пользователи получили возможность, независимо друг от друга, оперативно взаимодействовать с машиной. В эти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ - серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM. Начиная с ЭВМ 3-го поколения, традиционным стала разработка серийных ЭВМ. Хотя машины одной серии сильно отличались друг от друга по возможностям и производительности, они были информационно, программно и аппаратно совместимы. Например, странами СЭВ были выпущены ЭВМ единой серии («ЕС ЭВМ») «ЕС-1022», «ЕС-1030», «ЕС-1033», «ЕС-1046», «ЕС-1061», «ЕС-1066» и др. Производительность этих машин достигала от 500 тыс. до 2 млн. операций в секунду, объём оперативной памяти достигал от 8 Мб до 192 Мб. К ЭВМ этого поколения также относится «IВМ-370», «Электроника — 100/25», «Электроника — 79», «СМ-3», «СМ-4» и др. Для серий ЭВМ было сильно расширено программное обеспечение (операционные системы, языки программирования высокого уровня, прикладные программы и т.д.). Невысокое качество электронных комплектующих было слабым местом советских ЭВМ третьего поколения. Отсюда постоянное отставание от западных разработок по быстродействию, весу и габаритам, но, как настаивают разработчики СМ, не по функциональным возможностям. Для того, чтобы компенсировать это отставание, в разрабатывались спецпроцессоры, позволяющие строить высокопроизводительные системы для частных задач. Оснащенная спецпроцессором Фурье-преобразований СМ-4, например, использовалась для радиолокационного картографирования Венеры. Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ. Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию - ведь микропроцессор является сердцем и душой современного персонального компьютера. Но и это еще не все - поистине, рубеж 60-х и 70-х годов был судьбоносным временем. В 1969 г. зародилась первая глобальная компьютерная сеть - зародыш того, что мы сейчас называем Интернетом. И в том же 1969 году одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.
Четвертое поколение ЭВМ
К сожалению, начиная с середины 1970-х годов стройная картина смены поколений нарушается. Все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров. Обычно считается, что период с 1975 г. принадлежит компьютерам четвертого поколения. Их элементной базой стали большие интегральные схемы (БИС. В одном кристалле интегрированно до 100 тысяч элементов). Быстродействие этих машин составляло десятки млн. операций в секунду, а оперативная память достигла сотен Мб. Появились микропроцессоры (1971 г. фирма Intel), микро-ЭВМ и персональные ЭВМ. Стало возможным коммунальное использование мощности разных машин (соединение машин в единый вычислительный узел и работа с разделением времени). Однако, есть и другое мнение - многие полагают, что достижения периода 1975-1985 г.г. не настолько велики, чтобы считать его равноправным поколением. Сторонники такой точки зрения называют это десятилетие принадлежащим "третьему-с половиной" поколению компьютеров. И только с 1985г., когда появились супербольшие интегральные схемы (СБИС. В кристалле такой схемы может размещаться до 10 млн. элементов.), следует отсчитывать годы жизни собственно четвертого поколения, здравствующего и по сей день. Развитие ЭВМ 4-го поколения пошло по 2 направлениям: 1-ое направление — создание суперЭВМ - комплексов многопроцессорных машин. Быстродействие таких машин достигает нескольких миллиардов операций в секунду. Они способны обрабатывать огромные массивы информации. Сюда входят комплексы ILLIAS-4, CRAY, CYBER, «Эльбрус-1», «Эльбрус-2» и др. Многопроцессорные вычислительные комплексы (МВК) "Эльбрус-2" активно использовались в Советском Союзе в областях, требующих большого объема вычислений, прежде всего, в оборонной отрасли. Вычислительные комплексы "Эльбрус-2" эксплуатировались в Центре управления космическими полетами, в ядерных исследовательских центрах. Наконец, именно комплексы "Эльбрус-2" с 1991 года использовались в системе противоракетной обороны и на других военных объектах. 2-ое направление — дальнейшее развитие на базе БИС и СБИС микро-ЭВМ и персональных ЭВМ (ПЭВМ). Первыми представителями этих машин являются Apple, IBM - PC ( XT , AT , PS /2), «Искра», «Электроника», «Мазовия», «Агат», «ЕС-1840», «ЕС-1841» и др. Начиная с этого поколения ЭВМ стали называть компьютерами. Благодаря появлению и развитию персональных компьютеров (ПК), вычислительная техника становится по-настоящему массовой и общедоступной. Складывается парадоксальная ситуация: несмотря на то, что персональные и миникомпьютеры по-прежнему во всех отношениях отстают от больших машин, львиная доля новшеств - графический пользовательский интерфейс, новые периферийные устройства, глобальные сети - обязаны своим появлением и развитием именно этой "несерьезной" техники. Большие компьютеры и суперкомпьютеры, конечно же, не вымерли и продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.
Пятое поколение ЭВМ
ЭВМ пятого поколения — это ЭВМ будущего. Программа разработки, так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи хранения и обработки знаний. Коротко говоря, для компьютеров пятого поколения не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется. Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры. На ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров - устранения барьера между человеком и компьютером. К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Более 50-ти миллиардов йен инвестиций были потрачены впустую, проект прекращен, а разработанные устройства по производительности оказались не выше массовых систем того времени. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом. Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области. Многие успехи, которых достиг искусственный интеллект, используют в промышленности и деловом мире. Экспертные системы и нейронные сети эффективно используются для задач классификации (фильтрация СПАМа, категоризация текста и т.д.). Добросовестно служат человеку генетические алгоритмы (используются, например, для оптимизации портфелей в инвестиционной деятельности), робототехника (промышленность, производство, быт - везде она приложила свою кибернетическую руку), а также многоагентные системы. Не дремлют и другие направления искусственного интеллекта, например распределенное представление знаний и решение задач в интернете: благодаря им в ближайшие несколько лет можно ждать революции в целом ряде областей человеческой деятельности.
Современные персональные компьютеры
Современные персональные компьютеры (ПК) в соответствии с принятой классификацией надо отнести к ЭВМ четвертого поколения. Но с учетом быстро развивающегося программного обеспечения, многие авторы публикаций относят их к 5-му поколению. Персональные компьютеры появились на рубеже 60 – 70-х годов. Американская фирма Intel разработала первый 4-разрядный микропроцессор (МП) 4004 для калькулятора. Он содержал около тысячи транзисторов и мог выполнять 8000 операций в секунду. Вскоре была выпущена 8-битная версия данного МП, получившая название 8008. Оба МП всерьез восприняты не были, поскольку рассчитывались для конкретных применений. Они относятся к МП первого поколения. В конце 1973 г. Intel разработала однокристальный 8-разрядный МП 8080, рассчитанный для многоцелевых применений. Он был сразу замечен компьютерной промышленностью и быстро стал "стандартным". По стоимости он был доступен даже для любителей. Одни фирмы начали выпускать МП 8080 по лицензиям, другие - предложили его улучшенные варианты. Так, группа инженеров фирмы Intel, образовав собственную фирму Zilog, в 1976 г. выпустила МП Z80, сохраняющий базовую архитектуру 8080. Фирма Motorola разработала собственный 8-разрядный МП М6800, нашедший впоследствии широкое применение. Стив Возняк (будущий «отец» компьютеров Apple) собрал свой первый компьютер в 1972 году из деталей, забракованных местным производителем полупроводников в городе Беркли, штат Калифорния. Стив назвал свое изобретение Cream Soda Computer, поскольку пил именно этот напиток во время сборки аппарата. В начале 1976 года Стив Возняк, работая в Hewlett-Packard, предложил свой компьютер Apple руководству HP, но не нашел поддержки. В Hewlett-Packard победил другой проект – HP-85, основанный на идее совмещения компьютера и калькулятора. Тогда 1 апреля 1976 года два Стива – Возняк и Джобс – полушутя-полусерьезно зарегистрировали Apple Computer Company. И уже в июле предложили магазинам компьютер Apple-1 по цене $666,66. Apple-1 стал пользоваться спросом. Его успех был вызван простотой операционной системы. Прежде ПК управлялись через "командную строку", и пользователь, для того чтобы ставить задачи компьютеру, должен был быть хоть немного программистом. Создание же "мышки" и графически удобного интерфейса сделало ПК доступным для "чайников" и во многом определило успех Apple-1. Фирма IBM обратила внимание на персональные компьютеры, когда рынок "вырос из пеленок". К 1980 году только в США уже было продано более миллиона ПК, и маркетологи предсказывали взрывообразный рост спроса. Свои модели представили десятки компаний. Компьютеры при всей внешней схожести отличались большим разнообразием и были несовместимы друг с другом. Каждый производитель разрабатывал собственную архитектуру ПК. Считалось, что наиболее перспективной архитектурой обладает компьютер PDP-11, разработанный компанией DEC. Технические решения этой компании легли в основу первых отечественных компьютеров «Электроника». Однако, в конце 1980 года совет директоров IBM принял решение создать "машину, которая нужна людям". Стратегическим партнером в качестве поставщика процессоров была выбрана Intel. Команда разработчиков IBM PC заключила союз и с недоучившимся студентом Гарвардского университета Биллом Гейтсом. На существовавшие тогда ПК ставилась популярная операционная система CP/M, созданная компанией Digital Research, или система UCSD компании Softech. Однако эти операционные системы стоили $450 и $550 соответственно, а Гейтс за свою PC-DOS брал всего лишь $40. IBM сделала выбор в пользу дешевизны. 12 августа 1981 года IBM представила свой ПК, который был спроектирован не хуже, чем изделия тогдашних лидеров рынка – Commodore PET, Atari, Radio Shack и Apple. IBM пошла на неожиданный шаг. Решив утвердить свою архитектуру в качестве стандарта, она открыла техническую документацию. Теперь каждый производитель ПК мог приобрести лицензию у IBM и собирать подобные компьютеры, а производители микропроцессоров – изготавливать элементы для них. IBM рассчитывала «перетянуть одеяло» на себя, уничтожив стандарты конкурентов. Так и произошло. Сохранить собственную архитектуру смогла только Apple: она нашла свою нишу в сферах графического дизайна и образования. Все остальные производители либо разорились, либо приняли стандарт IBM. Весной 1983 г. фирма IBM выпускает модель PC XT с жестким диском, а также объявляет о создании нового поколения микропроцессоров - 80286. Новый компьютер IBM PC AT (Advanced Technologies), построенный на основе МП 80286, быстро завоевал весь мир и несколько лет оставался наиболее популярным. Первые 32-разрядные микропроцессоры появились на мировом рынке в 1983-1984 гг., но их широкое использование в высокопроизводительных ПК началось с 1985 г. после выпуска фирмами Intel и Motorola микропроцессоров 80386 и М68020 соответственно. Эти БИС открыли новое микропроцессорное поколение, реализующее обработку данных на уровне "больших" ЭВМ. В 1989 г. был начат выпуск более мощного МП 80486 с быстродействием более 50 млн. операций в секунду. В марте 1993 г. фирма Intel продолжает ряд 80х86 выпуском микропроцессора Р5 "Pentium" с 64-разрядной архитектурой. Потом были "Pentium 2", "Pentium 3". Сегодня самым популярным МП является "Pentium 4" с технологией НТ, позволяющей обрабатывать информацию по 2-м параллельным потокам. Т.е. получать как бы два процессора. Тактовые частоты современных ПК превышают 3 ГГц, объмы ОЗУ до 4 ГБ. Емкость накопителей на жестких дисках выросла до 500 ГБ. Современные технологии позволяют на ПК прослушивать и записывать высокачественные ауди-файлы. Применение DVD приводов обеспечивает просмотр современных фильмов. Широкое распространение получили сегодня переносные ПК - nootbook, карманные ПК (КПК) и мобильные ПК - смартфоны, объединяющие функции ПК и телефона. В состав современного ПК входят:
1. Системный блок
o материнская плата с адаптерами HDD, FDD, CD/DVD-ROM, шины, порты, микросхема BIOS, таймер
- центральный процессор
- линейки ОЗУ
- видео карта (может быть интегрирована в материнскую плату)
- аудиo карта (может быть интегрирована в материнскую плату)
- сетевая карта (может быть интегрирована в материнскую плату)
o Накопители на жестких и гибких магнитных дисках
o Приводы CD- и DVD-ROM
o Блок питания
o Корпус
2. Монитор
3. Клавиатура
4. Манипулятор "мышь"
5. Звуковые колонки
6. Принтер
7. Сканер
8. Модем или адаптер ADSL
Ну, и конечно же, компьютер нельзя представить без программного обеспечения. Как архитектура IBM PC стала стандартом для аппаратной части ПК, так и продукция фирмы MicroSoft (Билл Гейтс) стала эталоном для программ. Особенно популярны ее операционные системы Windows и офисные приложения MS-Office.
Классификация современных компьютеров по функциональным возможностям
Искусственный интеллект
- это направление научных исследований, в которых на основе изучения процессов мышления разрабатывают технические системы и программы, способные имитировать умственную деятельность человека. Экспертные системы
- это программы для компьютера, которые дают возможность накоплять и классифицировать знание, сравнивать и строить заключения, то есть имитировать поведение эксперта или консультанта в конкретных сферах деятельности человека. Здесь используют специальные базы данных - базы знаний. Решается задача естественного, с точки зрения человека, общения пользователя и компьютера. С этой целью уже созданы автоматы, которые читают и воспринимают информацию на слух. их функционирования грунтуется на распознавании образов. И хотя пора машин, которые разговаривают, понимают устный язык и думают, еще не настала, тем не менее она не промедлит. Эра выше упомянутых, очень умных, систем поставит жирную точку и начнет новое поколение и классификацию, да и интеллект будет не тот. Ну а пока вернемся в ХХ век. Характерной особенностью 90-х лет было бушующее развитие электроники, массовый выпуск и использования мощных персональных компьютеров и периферийной техники. Давайте почтим те 80-90 гг. когда компьютеры только начали классифицироваться. Классификация компьютеров.
В зависимости от возможностей компьютеры разделяют на: 1) суперкомпьютеры; 2) большие компьютеры; 3) маленькие компьютеры; 4) микрокомпьютеры; 5) специализированные компьютеры. Суперкомпьютеры
("Эльбрус", модели серии "Крей") - эти много процессорные системы, которые выполняют миллиарды операций за секунду. Цена такой машины - несколько миллионов долларов. Их используют в космических исследованиях, для перспективного прогнозирования погоды на планете, обработка геодезической информации во время поиска полезных ископаемых, а также в воинских исследованиях. У СИТА создан компьютер, способный выполнять больше триллиона операций за секунду. В нем использовано 9200 процессоров "Pentіum Pro", которые работают параллельно, что дало возможность достичь рекордной на то время скорости вычислений. Это достижение сравнивают с преодолением звукового барьера самолетами. Большие компьютеры
(например, модели "ЕС-1060", "ЕС-1061", "ЕС-1065" и прочей, а также машины серии "ІВМ-370") эксплуатировали в 70-х -80-х годах для решения научных и производственных задач: планирования производства, учета материалов, начисления зарплаты рабочим и служащим и т.п. Быстродействие больших компьютеров - несколько миллионов операций за секунду. Их обслуживали специалисты, которые работали в вычислительных центрах предприятий и организаций. Для размещения таких компьютеров нужны были специально оборудованные просторные помещения. Малые компьютеры
(например, модели "CM-С", "СМ-4" в нашей стране и машины серии "PDP" фирмы DEC в США) использовали на небольших предприятиях, в научно-исследовательских институтах для решения специфических задач, а также для обучение студентов в вузах. Быстродействие этих машин - 100-500 тысяч операций за секунду. Маленький компьютер помещался в небольшой комнате. Микрокомпьютеры
(а это - персональные компьютеры, портативные компьютеры, специализированные рабочие станции) в 90-х годах заменили большие и маленькие компьютеры. Сегодня персональные компьютеры используют на предприятиях, в научных организациях, учебных заведениях, а также в быте. За пультом персонального компьютера работает один человек. Ни быстродействием, ни объемом памяти персональный компьютер не уступает большому или маленькому. Поэтому он стал наиболее распространенным типом. Специализированные компьютеры
(например, компьютер в часах, в фотоаппарате, в автомобиле, в станках с числовым программным управлением) есть составными разных механизмов. В отличие от универсальных компьютеров, их используют для решения отдельных задач. Их функционирование не требует постоянного вмешательства человека, то есть определенный период времени, они работают автоматически, выполняя одну и ту же функцию. Для выполнения другой работы их надо перепрограммировать. Упомянутые большие и маленькие компьютеры уже не выпускают. На предприятиях и в учреждениях их заменили персональные компьютеры и серверы, предназначенные для обслуживания широкого круга пользователей. Сервер
- это мощный компьютер или дорогая многопроцессорная система большой производительности, которая предоставляет многим пользователям доступ к оперативной памяти с большим объемом мегабайт и к дисковой памяти емкостью сотни гигабайт. Пользователи, имея в своем распоряжении рабочие станции (дисплей, клавиатуру и т.п.), которые могут быть на значительном расстояния от сервера, подсоединяются и работают. Взаимодействие с сервером происходит по помощи сети и специального программного обеспечения.
Основные виды ЭВМ
В современной ВТ
основой представления информации являются электрические сигналы, допускающие в случае использования напряжений постоянного тока две формы представления -
аналоговую
и дискретную.
В первом случае величина напряжения является аналогом значения некоторой измеряемой переменной, например, подача на вход напряжения в 1.942
в
эквивалентна вводу числа 19.42
(при масштабе 0.1
). Во втором случае -
в виде нескольких различных напряжений, эквивалентных числу единиц в представляемом значении переменной. При аналоговом представлении информации значения измеряемых величин могут принимать любые допустимые значения из заданного диапазона, плавно без разрывов переходя от одного значения к другому. Теоретически, представляется весь бесконечный спектр значений измеряемой величины на заданном отрезке. Таким образом, аналоговые ВМ
- вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения).
При дискретном
представлении информации значения измеряемых величин носят дискретный (конечный) характер в измеряемом диапазоне.
Цифровые ВМ
- вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме. Наиболее широкое применение получили цифровые ВМ с электрическим представлением дискретной информации - электронные цифровые вычислительные машины, обычно называемые просто электронными вычислительными машинами (ЭВМ), без упоминания об их цифровом характере.
Достоинства аналоговой формы представления информации:
при создании ВТ
аналогового типа требуется меньшее число компонент (ибо одна измеряемая величина представляется одним сигналом);
аналоговая ВТ
более интеллектуальна и производительна за счет возможности легко интегрировать сигнал, выполнять над ним любое функциональное преобразование и т.д.;
за счет ряда особенностей она позволяет решать ряд классов задач во много раз быстрее, чем дискретная ВТ.
Недостатки аналоговой формы представления информации:
так как при создании ВТ
аналогового типа требуется меньшее число компонент, то сложность ее быстро возрастает за счет необходимости различать значительно большее число (вплоть до бесконечности) состояний сигнала;
сложность реализации устройств для ее логической обработки, длительного хранения и высокой точности измерения
Аналоговые вычислительные машины (АВМ) предназначены, в первую очередь, для решения задач, описываемых системами дифференциальных уравнений:
управление непрерывными процессами;
моделирование в гидро- и аэродинамике;
исследование динамики сложных объектов, электромагнитных полей;
параметрическая оптимизация и оптимальное управление, и др. Но АВМ
не могут решать задач, связанных с хранением и обработкой больших объемов информации различного характера;
задач с высокой степенью точности и др., с которыми легко справляются электронные вычислительные машины (ЭВМ
), использующие дискретную форму представления информации.
Положительные черты обоих типов совмещают гибридные
ВМ
- вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.
В свете сказанного, по принципу действия
классификация современных ЭВМ, может быть представлена следующим образом.
-----------------
|
----------------
|
Аналоговые
ВМ (АВМ)
|
Гибридные
ВМ (ГВМ)
|
Цифровые
ВМ (ЦВМ)
|
|
По назначению
классификация современных ЭВМ, может быть представлена следующим образом:
Специальные -
ориентированы на решение отдельных задач или одного класса задач. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.
Общего
назначения -
служат для решения широкого класса задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных.
Проблемно-ориентированные
-
служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам.
По целому ряду
причин и, в первую очередь, своим возможностям именно дискретное
представление информации определяет на сегодня лицо всей ВТ,
основу которой составляют ЭВМ
различных классов и типов. С определенной степенью адекватности ЭВМ можно классифицировать как:
микро-ЭВМ
- это ЭВМ, в которых центральный процессор выполнен в виде микропроцессора. К ним относятся персональные компьютеры (ПК) - это микрокомпьютеры универсального назначения, рассчитанные на одного пользователя и управляемые одним человеком.
Пеpсональный компьютеp должен удовлетворять следующим требованиям:
объём оперативной памяти не менее 4 Мбайт;
наличие операционной системы;
способность работать с программами на языках высокого уровня;
в основном ориентация на пользователя-непрофессионала ;
наличие внешних ЗУ на магнитных дисках;
малые ЭВМ
(мини ЭВМ) - надежные, недорогие и удобные в эксплуатации компьютеры, обладающие несколько более низкими по сравнению с большими ЭВМ возможностями.
Мини ЭВМ обладают следующими характеристиками:
производительность - до 100 МIPS;
емкость основной памяти - 4-512 Мбайт;
емкость дисковой памяти - 2-100 Гбайт;
число поддерживаемых пользователей-16-512.
супер-ЭВМ -
к ним относятся мощные многопроцессорные вычислительные машины с быстродействием сотни миллионов - десятки миллиардов операций в секунду. Супер-ЭВМ используются для решения сложных и больших научных задач, в управлении, разведке, в качестве централизованных хранилищ информации и т.д.
Типовая модель суперЭВМ должна иметь примерно следующие характеристики:
высокопараллельная многопроцессорная вычислительная система с быстродействием примерно 100000 МFLOPS;
емкость: оперативной памяти 10 Гбайт, дисковой памяти 1-10 Тбайт (1 1000Гбайт);
разрядность: 64; 128 бит.
большие ЭВМ
- наиболее мощные (не считая суперкомпьютеров) вычислительные системы общего назначения, обеспечивающие непрерывный круглосуточный режим эксплуатации.
Большие ЭВМ обладают следующими характеристиками:
производительность не менее 10 MIPS;
основную память емкостью от 64 до 1000 Мбайт;
внешнюю память не менее 50 Гбайт;
многопользовательский режим работы (обслуживает одновременно от 16 до 1000 пользователей).
Данная классификация ЭВМ
носит в определенной степени условно-субъективный характер, но вполне отражает положение дел в современной ЦВТ. О
тносительно пользователя классификация ЭВМ, как правило, носит весьма условный характер и ведется по следующим основным показателям:
адекватность решаемым им задач;
простота и удобство интерфейса с ЭВМ;
развитость нужных ему ПС
;
доступность (стоимость, режим доступа и др.).
Список литературы:
1. http://www.tspu.tula.ru/ivt/old_site/umr/avsks/node27.html
2. http://www.gpntb.ru/win/book/3/Doc2.HTML
3. http://www.bashedu.ru/konkurs/tarhov/russian/generat.htm
4. http://pchistory.narod.ru/pokoleniya.html
5. http://sugarcomp.narod.ru/clas.htm
|