Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Элементы аналитической геометрии

Название: Элементы аналитической геометрии
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 04:37:49 18 июня 2011 Похожие работы
Просмотров: 398 Комментариев: 21 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ЭКОНОМИКИ И ВНЕШНЕЭКОНОМИЧЕСКИХ СВЯЗЕЙ

Контрольная работа

по дисциплине: «Линейная алгебра»

Выполнил:

Воропаева Екатерина Андреевна

(Ф.И.О.)

2010-З-ФК-1

(номер группы)

Вариант № 3

Проверил

преподаватель:

Кирютенко Юрий Александрович

Ростов – на - Дону

2010

Оглавление

1. Комплексные числа. 3

2. Элементы аналитической геометрии. 3

3. Вычисление определителей. 3

4. Метод Гаусса. 3

5. Метод Крамера. 3

6. Матричные уравнения. 3

Решение контрольной работы

Вариант № 3

1. Комплексные числа.

1.3. а) Вычислите: .

Решение:

Используя следующие правила:

выполним вычисления

1.3. б) Решите уравнение:

,

где

Решение:

Левую часть уравнения можно рассматривать, как некоторое неизвестное комплексное число. Приведя его к виду , получаем уравнение равносильное данному: . Так как два комплексные числа равны тогда и только тогда, когда равны их действительные и мнимые части, приходим к системе:

Ответ : .

2. Элементы аналитической геометрии.

Треугольник задан координатами вершин на плоскости. Найти уравнения сторон треугольника, медианы ВМ и высоты СН.

A (1,7); В (-3,-1); С (4,-2).

Решение:

Выполним чертеж:

H

M

C (4, -2)

B (-3, -1)

A (1, 7)

Для нахождения уравнений сторон треугольника воспользуемся формулой уравнения прямой, проходящей через две точки А1 (x1 , y1 ) и
А2 (x2 , y2 ):

подставив поочередно в формулу (1) попарно координаты точек А и В , В и С , А и С .

Уравнение прямой, проходящей через точки А (1, 7) и В (-3, -1):

Уравнение прямой, проходящей через точки В (-3, -1) b C ( 4,-2) :

Уравнение прямой, проходящей через точки А (1, 7) и C ( 4,-2):

Для определения уравнения медианы ВМ предварительно вычислим координаты точки М, воспользовавшись формулами нахождения координат середины отрезка А1 А21 (x1 , y1 ) и А2 (x2 , y2 )):

где х1 , у1 – координаты точки А (1, 7);

х2 , у2 – координаты точки С (4, -2).

Координаты точки М:

Точка М имеет координаты х = 2,5 и у = 2,5 , т. е. М (2,5; 2,5).

Для нахождения уравнения медианы ВМ воспользуемся формулой (1), подставив в нее координаты точек В (-3, -1) и М (2,5; 2,5) .

Уравнение медианы ВМ:

Для определения уравнения высоты СН воспользуемся формулой уравнения прямой, проходящей через данную точку М1 ( x 1 , y 1 ) перпендикулярно к данной прямой y = ax + b :

подставив в нее координаты точки С( 4,-2 ) и данные из уравнения прямой АВ Получим:

Уравнение высоты СН:

3. Вычисление определителей.

Решение:

Используя алгебраические преобразования, получим в первом столбце в четвертой и пятой строке нули. Для этого от элементов четвертой строки отнимем элементы первой строки и полученный результат запишем на место элементов четвертой строки матрицы. От элементов пятой строки отнимем элементы первой строки и полученный результат запишем на место элементов пятой строки матрицы. Получим:

Разложим определитель матрицы по элементам первого столбца, имеем:

Такой прием называется сведением определителя более высокого порядка к определителю более низкого порядка.

Во второй строке последнего определителя все элементы строки, кроме элемента первого столбца, равны нулю. Поэтому удобно разложить определитель матрицы по элементам второй строки. В результате получим следующий результат.

В новом определителе третьего порядка во второй строке только один элемент не равен нулю, поэтому разложим этот определитель по элементам второй строки. Получим следующий результат:

Определитель матрицы равен 4.


4. Метод Гаусса.

Найти решение системы линейных уравнений методом Гаусса.

Решение:

Система уравнений – это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких переменных. Решением системы уравнений называется упорядоченный набор чисел (значений переменных), при подстановке которых вместо переменных каждое из уравнений системы обращается в верное равенство.

Метод Гаусса – классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Сформируем исходную матрицу:

х1

х2

х3

х4

Столбец свободных членов

7

5

-4

-6

3

-4

7

1

3

5

-9

10

3

7

7

Разделим все элементы первой строки матрицы на 7, получим:

х1

х2

х3

х4

Столбец свободных членов

1

5/7

- 4/7

- 6/7

3/7

-4

7

1

3

5

-9

10

3

7

7

Умножим все элементы первой строки матрицы на 4 и просуммируем с элементами второй строки, результат вычислений запишем во вторую строку:

х1

х2

х3

х4

Столбец свободных членов

1

5/7

- 4/7

- 6/7

3/7

0

9 6/7

-1 2/7

- 3/7

6 5/7

-9

10

3

7

7

Умножим все элементы первой строки матрицы на 9 и просуммируем с элементами третьей строки, результат вычислений запишем в третью строку:

х1

х2

х3

х4

Столбец свободных членов

1

5/7

- 4/7

- 6/7

3/7

0

9 6/7

-1 2/7

- 3/7

6 5/7

0

16 3/7

-2 1/7

- 5/7

10 6/7

Все элементы второй строки разделим на 9 6/7:

х1

х2

х3

х4

Столбец свободных членов

1

5/7

- 4/7

- 6/7

3/7

0

1

- 3/23

- 1/23

47/69

0

16 3/7

-2 1/7

- 5/7

10 6/7

Все элементы второй строки умножим на -16 3/7 и складываем с элементами третьей строки:

х1

х2

х3

х4

Столбец свободных членов

1

5/7

- 4/7

- 6/7

3/7

0

1

- 3/23

- 1/23

47/69

0

0

0

0

- 1/3

Ранг матрицы системы равен: r(A) = 2; ранг расширенной матрицы (вместе со столбцом свободных членов) r(A1 )=3, т. е. r(A)≠r(A1 ); следовательно система уравнений несовместна, т. е. не имеет решений.


5. Метод Крамера.

Решить систему линейных уравнений методом Крамера.

Решение:

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.


Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

- 331

Определитель системы не равен нулю, следовательно, система уравнений имеет единственное решение.

Найдем решение системы уравнений:


6. Матричные уравнения

Решить матричное уравнение, вычисляя обратную матрицу, сделать проверку.

Решение:

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:


Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы

и матрицы столбцы неизвестных и свободных членов

.

Найдем произведение

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче A∙X=B.

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением .

Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A-1, обратную матрице A:

.

Поскольку A-1 A = E и EX = X , то получаем решение матричного уравнения в виде X = A-1 B .

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных . Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A-1 B .

В нашем случае матричная запись системы уравнений будет выглядеть следующим образом: X∙A=B, а решение матричного уравнения получаем в виде X = B∙ A-1 .

Вычислим обратную матрицу А-1 .

Определитель матрицы

Система совместна и имеет единственное решение.

Вычислим союзную матрицу, состоящую из алгебраических дополнений элементов матрицы А.

Союзная матрица .

Транспонируя союзную матрицу, находим к матрице А присоединенную матрицу.

Присоединенная матрица .

Вычислим обратную матрицу по формуле: . Получим следующий результат:

.

Найдем X = B A -1 , выполнив умножение матриц B∙ A-1 .

Матрица - математический объект, записываемый в виде прямоугольной таблицы чисел и допускающий алгебраические операции (сложение, вычитание, умножение) между ним и другими подобными объектами.

Умножение матриц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения называется произведением матриц. Операция умножения двух матриц выполнима только в том случае, если число столбцов в первом сомножителе равно числу строк во втором, в этом случае говорят, что форма матриц согласована.

Вычислим элементы матрицы |Х|:

x1,1 = b1,1 ∙ a1,1 + b2,1 ∙ a1,2 + b3,1 ∙ a1,3

x1,2 = b1,2 ∙ a1,1 + b2,2 ∙ a1,2 + b3,2 ∙ a1,3

x1,3 = b1,3 ∙ a1,1 + b2,3 ∙ a1,2 + b3,3 ∙ a1,3

x2,1 = b1,1 ∙ a2,1 + b2,1 ∙ a2,2 + b3,1 ∙ a2,3

x2,2 = b1,2 ∙ a2,1 + b2,2 ∙ a2,2 + b3,2 ∙ a2,3

x2,3 = b1,3 ∙ a2,1 + b2,3 ∙ a2,2 + b3,3 ∙ a2,3

x3,1 = b1,1 ∙ a3,1 + b2,1 ∙ a3,2 + b3,1 ∙ a3,3

x3,2 = b1,2 ∙ a3,1 + b2,2 ∙ a3,2 + b3,2 ∙ a3,3

x3,3 = b1,3 ∙ a3,1 + b2,3 ∙ a3,2 + b3,3 ∙ a3,3

x1,1 =

1

3

+

2

(-3)

+

3

1

=

3

+

(-6)

+

3

=

0

x1,2 =

1

(-2.5)

+

2

4

+

3

(-1.5)

=

-2.5

+

8

+

(-4.5)

=

1

x1,3 =

1

0.5

+

2

∙ (

-1)

+

3

0.5

=

0.5

+

(-2)

+

1.5

=

0

x2,1 =

2

3

+

4

(-3)

+

6

1

=

6

+

(-12)

+

6

=

0

x2,2 =

2

(-2.5)

+

4

4

+

6

(-1.5)

=

-5

+

16

+

(-9)

=

2

x2,3 =

2

0.5

+

4

(-1)

+

6

0.5

=

1

+

(-4)

+

3

=

0

x3,1 =

3

3

+

6

(-3)

+

9

1

=

9

+

(-18)

+

9

=

0

x3,2 =

3

(-2.5)

+

6

4

+

9

(-1.5)

=

-7.5

+

24

+

(-13.5)

=

3

x3,3 =

3

0.5

+

6

(-1)

+

9

0.5

=

1.5

+

(-6)

+

4.5

=

0

Результирующая матрица: .

Выполним проверку, подставив в формулу X∙A=B значения │Х│ и │А│. В результате выполненного умножения матриц должна получится матрица │В│.

Вычислим элементы матрицы |B|:

b1,1 = x1,1 ∙ a1,1 + x1,2 ∙ a2,1 + x1,3 ∙ a3,1

b1,2 = x1,1 ∙ a1,2 + x1,2 ∙ a2,2 + x1,3 ∙ a3,2

b1,3 = x1,1 ∙ a1,3 + x1,2 ∙ a2,3 + x1,3 ∙ a3,3

b2,1 = a2,1 ∙ b1,1 + a2,2 ∙ b2,1 + a2,3 ∙ b3,1

b2,2 = a2,1 ∙ b1,2 + a2,2 ∙ b2,2 + a2,3 ∙ b3,2

b2,3 = a2,1 ∙ b1,3 + a2,2 ∙ b2,3 + a2, 3 ∙ b3,3

b3,1 = a3,1 ∙ b1,1 + a3,2 ∙ b2,1 + a3,3 ∙ b3,1

b3,2 = a3,1 ∙ b1,2 + a3,2 ∙ b2,2 + a3,3 ∙ b3,2

b3,3 = a3,1 ∙ b1,3 + a3,2 ∙ b2,3 + a3,3 ∙ b3,3

b1,1 =

0

1

+

1

1

+

0

1

=

0

+

1

+

0

=

1

b1,2 =

0

1

+

1

2

+

0

4

=

0

+

2

+

0

=

2

b1,3 =

0

1

+

1

3

+

0

9

=

0

+

3

+

0

=

3

b2,1 =

0

1

+

2

1

+

0

1

=

0

+

2

+

0

=

2

b2,2 =

0

1

+

2

2

+

0

4

=

0

+

4

+

0

=

4

b2,3 =

0

1

+

2

3

+

0

9

=

0

+

6

+

0

=

6

b3,1 =

0

1

+

3

1

+

0

1

=

0

+

3

+

0

=

3

b3,2 =

0

1

+

3

2

+

0

4

=

0

+

6

+

0

=

6

b3,3 =

0

1

+

3

3

+

0

9

=

0

+

9

+

0

=

9

Результирующая матрица: . Как показывают расчет, задача решена верно.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита05:01:35 04 ноября 2021
.
.05:01:33 04 ноября 2021
.
.05:01:31 04 ноября 2021
.
.05:01:30 04 ноября 2021
.
.05:01:29 04 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Контрольная работа: Элементы аналитической геометрии

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте