Задание
Спроектировать привод к конвейеру по схеме (рис.1). Механизм привода состоит из конического редуктора и цепной передачи.
Исходные данные для проектирования:
1.Мощность на ведомой звездочке N2
= 2,5 кВт
2.Угловая скорость на ведомой звездочке = 8 рад/с
Рис.1
Выбор электродвигателя. Кинематический и силовой расчет.
1. Определяем общий КПД привода передачи:
общ
м
× 2
оп
× цп
× кп
= 0,98 × 0,992
× 0,92 × 0,96 = 0,85
м
− КПД муфты
оп
− КПД подшипников
цп
− КПД цепной передачи
кп
− КПД конической передачи
2. Требуемая мощность электродвигателя будет равна:
Pэл
= = = 2,94кВт
3. Выбираем электродвигатель:
трехфазный асинхронный электродвигатель серии 4АМ предназначенные для привода машин и механизмов общепромышленного применения.
Табл.1
тип электродвигателя |
Мощность кВт. |
Число оборотов об/мин |
4АМ90L2У3 |
3 |
2840 |
4АМ100S4У3 |
3 |
1435 |
4АМ112МA6У3 |
3 |
955 |
4АМ112MB8У3 |
3 |
700 |
4.Определяем частоту вращения выходного вала привода:
nвых
= = = 76,43 об/мин
5.Определяем передаточное число привода для всех вариантов при заданной номинальной мощности:
iпер1
= = =37,16iпер2
= = =18,78
iпер3
= = = 12,5iпер4
= = =9,16
6.Производим разбивку передаточного числа привода по ступеням, принимая для всех вариантов передаточное число редуктора постоянным и равным iзп
= 3,15.
цп1
= = =11,8iцп2
= = =5,96
iцп3
= = = 3,97iцп4
= = = 2,91
Табл.2
Передаточное число |
Варианты |
1 |
2 |
3 |
4 |
привода iпер |
37,16 |
18,78 |
12,5 |
9,16 |
конического редуктора iзп |
3,15 |
3,15 |
3,15 |
3,15 |
цепной передачи iцп |
11,8 |
5,96 |
3,97 |
2,91 |
Анализируя полученные значения передаточных чисел, приходим к выводу:
a)первый вариант (i = 37,16; nном
= 2840 об/мин) затрудняет реализацию принятой схемы двухступенчатого привода посредством конического редуктора
и цепной передачи из-за большого передаточного числа i всего двигателя.
б)во втором варианте (i = 18,78; nном
= 1435 об/мин) получилось все таки большое значение передаточного числа цепной передачи, уменьшение которого за счет увеличения передаточного числа редуктора нежелательно.
в)четвертый вариант (i = 9,16; nном
= 700 об/мин) не рекомендуется для приводов общего назначения ввиду того, что двигатели с низкими частотами оборотов весьма металлоемки.
г)из рассмотренных четырех вариантов предпочтительнее всего третий:
i= 12,5nном
= 955об/мин.
7.Определяем максимально допустимое отклонение частоты вращения приводного вала рабочей машины nрм
, об/мин
nрм
= = = 3,82 об/мин
8.Определяем допускаемую частоту вращения приводного вала рабочей машины с учетом отклонения [nрм
], об/мин:
[nрм
] = nвых
+ nрм
= 76,43 + 3,82 = 80,25 об/мин
9. Определяем фактическое передаточное число привода iф
:
iф
= = =11,84
10.Уточняем передаточные числа закрытой и открытой передач в соответствии с выбранным вариантом разбивки передаточного числа привода (при этом неизменным оставим iзп
= 3,15):
iоп
= = =3,78
Таким образом, выбираем электродвигатель 4АМ112МA6У3 с nном
= 955 об/мин и мощностью Рном
= 3кВт.
1. Определим мощность, число оборотов и крутящий момент на быстроходном валу:
PБ
= Pэл
× м
= 3 × 0,98 = 2,94 кВтnБ
= nэл
= 955 об/мин;
Б
= = = 100,01 рад/секMКБ
= = = 29,4 Hм
на тихоходном валу:
PТ
= PБ
× кп
× 2
оп
= 2,94× 0,96 × 0,992
= 2,77 кВт
nТ
= = = 303,17 об/минТ
= = = 31,75 рад/сек
MКТ
= = = 92,6 Hм
Выбор твердости, термообработки и материала колес.
1)В соответствии с рекомендациями из таблицы 3.1 [1] при мощности двигателя Р £ 7,5кВт выбираем материал для зубчатой пары колес. При этом будем учитывать, что разность средних твердостей рабочих поверхностей зубьев шестерни и колеса при твердости материала Н £ 350 НВ в передачах с прямыми зубьями составляет Δср
= НВ1ср
− НВ1ср
= 20 ÷ 50 :
шестерня:
сталь 45
улучшение
|
|
колесо:
сталь 45
улучшение
|
|
2)Из таблицы 3.2 [1] выбираем интервал твердости зубьев шестерни НВ1
и колеса НВ2
,:
НВ1
=НВ2
= 179÷262 НВ
3)Определяем среднюю твердость зубьев для шестерни и колеса:
|
колесо:
НВср2
= НВср1
− Δср
HBср2
=
193 − 20 =
173
|
|
Определение допускаемых контактных напряжений []к
, H/мм2
Определяем допускаемые контактные напряжения для зубьев шестерни []H1
и колеса []H2
по формуле шестерни напряжения
[]к
=[но
]× , где
[SH
] – коэффициент безопасности, равный 1,1для однородных материалов.
кН
L
– коэффициент долговечности, равный 1,8 при t =10000час
[но
]= Hв
r
×1,8+67
[
sно
]2
=173×1
,8
+67=378,40
|
|
Находим:[
sк
2
]= [
sно
]2
×
=378,40 ×
=619,2
|
|
[но
]1
=193×1,8+67=414,40[к1
]= [но
]1
× =414,40 × =678,11
Определение допускаемых напряжений изгиба []u
[]u
= [ро
]× ,
где кр
L
=1,1,крС
= 1,0 − коэффициент приложения
нагрузки, [Sр
]=1,75 − для поковки, [ро
] − предел направления изгиба.
[ро
] =1,03× =1,03× = 188,49 H/мм2
следовательно:
[]uз
= [ро
]× = 188,49 × = 118,48H/мм2
Расчет закрытой конической зубчатой передачи.
1.Определим главный параметр − внешний делительный диаметр колеса de
2
, :
de
2
/ 165 × ,где кн
= 1 (для прямозубых передач)
н
= 1,0 − коэффициент вида конических колес (прямозубые)
de
2
/ 165 × =165 × =150,63
округляем до de
2
= 150 мм (ГОСТ 6636-69)
2.Определяем углы делительных конусов шестерни Ð
и колеса Ð2
:
Ð2
= arctgi = arctg 3,15 = 72,3874 o
, Ð
o
−Ð2
=o
−72,3874 o
=17,6126o
Определение внешнего конусного расстояния Re
, мм:
Re
= = = 78,69
4.Определение ширины зубчатого венца шестерни и колеса b, мм:
b = R
Re
,где R
=0,285 −коэффициент ширины венца
b = R
Re
= 0,285×78,69=22,42
округляем до b = 22мм (ГОСТ 6636-69)
5.Определение внешнего окружного модуля me
, мм:
me
= ,
где кF
=1 – коэффициент, учитывающий распределение нагрузки по ширине венца (прямозубые).
F
=0,85 – коэффициент, вида конических колес (прямозубые).
me
= = =3,9
6.Определение числа зубьев колеса z2
и шестерни z1
:
z2
= = =38,46z1
= = =12,2
так как в рекомендациях [1] по условиям уменьшения шума и отсутствия подрезания зубьев рекомендуется принять z1
/ 18 (прямозубая пара колес), для силовых конических передач принимаем модуль me
=2 [1].
Следовательно:
z2
= = =75z1
= = =24
7.Определение фактического передаточного числа iф
и проверка его отклонения Δi от заданного i:
iф
= = =3,125Δiф
= ×100% = ×100% =0,6% £ 4%
8.Определение действительных углов делительных конусов шестерни Ð1
и колеса Ð2
:
Ð2
= arctgiф
= arctg 3,125 =72,2553o
1
= 90o
–2
= 90o
– 72,2553o
=17,7447o
9.Определение фактических внешних диаметров шестерни и колеса, мм:
de1
= me
× z1
=2×24 =48de2
= me
× z2
=2×75 = 150
10.Определение вершин зубьев, мм:
dbe1
= de1
+ [2(1+ xe1
)cos 1
]×me
, гдеxe1
= 0
dbe1
= de1
+ [2(1+ xe1
)cos 1
]×me
= 48 +[2(1+0)cos 17,7447o
]×2 = 51,81
dbe2
= de1
+ [2(1– xe1
)cos 2
]×me
, гдеxe2
= 0
dbe2
= de2
+ [2(1 – xe2
)cos 2
]×me
= 150 +[2(1 – 0)cos 72,2553o
]×2 = 151,22
11.Определение размеров впадин, мм:
dfe
1
= de
1
– [2(1,2 – xe
1
) cos1
]× me
, где xe
1
= 0
dfe1
= de1
– [2(1,2 – xe1
) cos 1
]× me
=48 – [2(1,2 – 0)cos17,7447o
]×2=43,43
dfe2
= de2
– [2(1,2 + xe1
) cos 2
]× me
, гдеxe2
= 0
dfe2
= de2
– [2(1,2 + xe2
) cos 2
]× me
=150 – [2(1,2 + 0)cos72,2553o
]×2=148,54
12.Определение среднего делительного диаметра шестерни d1
и колеса d2
, мм:
d1
≈ 0,857×de
1
= 0,857 × 48 = 41,14 d2
≈ 0,857×de
2
=0,857×150=128,55
Проверочный расчёт.
а ) Условия пригодности заготовок колёс:
Dзаг
£Dпред
; Sзаг
£Sпред
По табл.3.2 [1]. Dпред
и Sпред
для любых размеров.
б) Проверяем контактные напряжения по формуле:
н
= 470×£ []H
где:
1) - окружная сила в зацеплении, F1
= =1440Н;
2) KH
= 1 − коэффициент ,учитывающий распределение нагрузки между зубьями.
3) KH
− коэффициент динамической нагрузки. Определяется по табл. 4.3 [1] в зависимости от окружной скорости колёс, где скорость колеса определяется по формуле:
= м/с и степени точности передачи
определяем по табл. 4.2 и табл4.3[1]. KH
=1,08
4) KH
=1.
н
= 470× = 590Hмм2
£ 619,2Hмм2
Допускаемая недогрузка передачи (н
£ [
не более 10% и перегрузка
(н
/ [
до 5% . = 4,72%.
б) Проверяем напряжения изгиба зубьев шестерни и колеса по формулам:
F
2
= Y×Y и
F
1
=F
2
× £ [F
1
; где :
1) значение b =22мм ; m=2мм;F
= 0,85 ; Ft
=1440Н. КF
=1 .
2) КFa
= 1 − коэффициент ,учитывающий распределение нагрузки между зубьями прямозубых колёс.
3) КF
=1,08 − коэффициент динамической нагрузки определяется аналогично коэффициенту − KH
4) YF
1
и YF
2
− коэффициенты формы зуба и колеса. Определяются по табл. 4.7
интерполированием в зависимости от эквивалентного числа зубьев шестерни Z
и колеса Z
:
Z
= = =25,2 YF
1
=3,67;
Z
= = = 246,01 Y= 3,63;
5) Y
= 1 − коэффициент, учитывающий наклон зуба.
6) []F
1
и []F
2
− допускаемые напряжения изгиба шестерни и колеса.
[]F2
=3,63 × 1 × ×1 ×1 × 1,08 = 150,9 Нмм2
[]F
1
= 150,9 × = 152,6 £[]F
1
; F
1
=152,6 Нмм2
£[]F
1
=416 Нмм2
F
2
= 150,9Hмм2
£[]F
2
=455б8Hмм2
.
При проверочном расчёте F
значительно меньше [F
, что это допустимо ,так как нагрузочная способность большинства зубчатых передач ограничивается контактной прочностью. Проверочный расчёт дал положительный результат.
Полученные результаты параметров конической зубчатой передачи сводим в таблицу №3:
Табл. 3
Проектный расчет |
Параметр |
Значение |
Параметр |
Значение |
Внешнее конусное расстояние Re
|
78,69 |
Внешний делительный диаметр:
шестерни de
1
колеса de
2
|
48
150
|
Внешний окружной модуль me
|
2 |
Ширина зубчатого венца b |
22 |
Внешний диаметр окружности вершин:
шестерни dbe
1
колеса dbe
2
|
51,81
151,22
|
Число зубьев:
шестерни z1
колеса z2
|
24
75
|
Вид зубьев |
прямой |
Внешний диаметр окружности впадин:
шестерни dfe
1
колеса dfe
2
|
43,43
148,54
|
Угол разделительного конуса, град:
шестерни 1
колеса 2
|
17,7447o
72,2553o
|
Средний делительный диаметр:
шестерни d1
колеса d2
|
41,14
128,55
|
Предварительное определение геометрических параметров валов и их расчет на прочность.
1. Выбор материала.
В проектируемых редукторах рекомендуется применять [1] термически обработанные среднеуглеродистые и легированные стали 45, 40Х, одинаковые для быстроходного и тихоходного вала. Выбираем по таблице 3.2 [1] сталь 40Х улучшенная со следующими механическими характеристиками:
Материал |
В |
Т |
–1 |
Сталь 40X |
Н/мм2 |
790 |
640 |
375 |
Проектный расчет валов выполняем по напряжениям кручения (как при чистом кручении) т.е. при этом не учитываем напряжения изгиба, концентраций напряжений и переменность напряжений во времени (циклы напряжений).
Поэтому для компенсации приближенности этого метода расчета допускаемые напряжения на кручение применяем заниженными: []к
=10…20 Н/мм2
. При этом меньшие значения []к
– для быстроходных валов, большие []к
– для тихоходных.
2.Определение сил действующих в зацеплении.
Окружные силы на шестерне и колесе:
Ft
1
= Ft
2
= = =1440 H
Радиальная сила на шестерне:
Fr
1
= Ft
1
r
,
где r
– коэффициент радиальной силы
r
= 0,44cos
– 0,7sin
=0,44cos17,7447 – 0,7sin17,7447=0,206
Fr
1
= Ft
1
r
=1440 × 0,206 =296,2Н
Осевая сила на шестерне:
Fa
1
= Ft
1
a
,
где a
– коэффициент осевой силы
a
= 0,44sin
+ 0,7cos
=0,44 sin17,7447 + 0,7cos17,7447=0,801
Fa
1
= Ft
1
r
=1440 × 0,801=1153H
Радиальная сила на колесе:
Fr
2
= Fa
1
= 1153H
Осевая сила на колесе:
Fa
2
= Fr
1
= 296,2Н
3.Определение размеров ступеней быстроходного вала, мм.
Согласно таблицы №7.1 [1], диаметр d1
выходного конца быстроходного вала, соединенного с двигателем через муфту, определяется по формуле:
a)d1
= = = 24,5
d1
выбираем равным 30мм.
б)d2
= d1
+ 2t =30 + 2×2,2 = 34,4мм, где t − высота буртика
d5
определяем в зависимости от d2
по табл. 10.11[1] для регулирующей гайки с мелкой метрической резьбой d5
= 36мм.(М36 × 1,5).
в)для быстроходного вала конического редуктора на 4-й ступени устанавливаются два подшипника и диаметр d4 равен диаметру d внутреннего кольца подшипника:
d4
= d5
+ (2…4) = 36 +4 = 40мм
г) d3
= d4
+ 3,2r = 40+3,2×2 =46,4мм,
где r − координата фаски внутреннего кольца подшипника.
д)под полумуфту длина выходного конца быстроходного вала:
l1
= (1,0…1,5)d1
= 1×30 = 30мм
е)l2
= 0,6 ×d4
= 0,6×40 =24мм
ж)l3
=23,56мм , l4
= 53,64ммопределено графически.
з)l5
= 0,4 × d4
= 0,4 × 40 = 16мм
4.Определение размеров ступеней тихоходного вала, мм.
Согласно таблицы №7.1 [1], диаметр d2
выходного конца тихоходного вала, соединенного цепной передачей с исполнительным механизмом, определяется по формуле:
dt
1
= = = 28,5
d1
выбираем равным 30мм.
d2
= d4
= 40мм,d3
= 48мм,d5
= 43мм,L1
= 30мм,
L2
= 37,5мм,L3
– определено графически,L4
= 36мм,L5
= 16мм.
5.Конструктивные размеры шестерни и колеса
Шестерню выполняем за одно с валом. Коническое зубчатое колесо кованное. Его размеры:
диаметр ступицы dст
≈(1,55…1,6)d≈ 48×1,55 = 76мм
длина ступицы Lст
≈ (1,1…1,5)d3
=54мм
толщина обода δo
≈ (3¸4)×m =8мм
толщина диска С =(0,1¸0,17)Re
= 14 мм
6.Первый этап компоновки редуктора.
Разработка чертежа общего вида редуктора.
а)Изисходныхданных Re
, de1
, de2
, δ1
, δ2
, me
, hae
= me
, hfe
= 1,2me
. Строим коническую пару зубчатой передачи.
б)Прочерчиваем контур внутренней поверхности стенок корпуса редуктора с зазором x от вращающихся поверхностей колеса для предотвращения задевания;
x = + 3 мм (x должен быть > 8 мм)
x = 9 мм
Расстояние y между дном и шестерней принимаем y/ 4x будет 36 мм.
в)Вычерчиваем ступени вала на соответствующих осях по размерам d и L, полученным в проектном расчете валов.
г)При установке радиально-упорных подшипников необходимо учитывать, что радиальные реакции считают приложенными к валу в точках пересечения нормалей, проведенных к середине контактных площадок. Для однородных конических подшипников по формуле
a1
= 0,5 ×(T + l)
a1
= 0,5 ×(20 + ×0,38) = 17,6 мм
a2
» 2,5 × a1
= 2,5 ×17,6 = 44 мм
д)Вал тихоходный вычерчивается впоследствии от 5-й к 1-й ступени, при этом длины 5-й и 3-й ступени (L5
, L3
) вала получают конструктивно. Третью ступень вала d3
c насиженным колесом следует расположить противоположно от выходного конца вала d, что обеспечить более равномерное распределение сил между подшипниками.
е)Выбираем способ смазывания. Зацепление зубчатой пары – окунание зубчатого колеса в масло. Для подшипников в пластичный смазочный материал. Раздельное смазывание принято потому, что один из подшипников ведущего вала удален и это затруднит попадание масляных брызг.
7.Выбор подшипников
По таблице К-29 [1] для конической передачи при n<1500 об/мин применяется подшипник роликовый конический однорядный. Выбираем типоразмер подшипника по величине диаметра внутреннего кольца, равного диаметру d =40мм.
Это подшипник легкой широкой серии 7208 (ГОСТ 27365 – 87).
d =40мм;D = 80мм;T = 20мм;угол контакта Ð 14o
;Cr
= 42,4 кН.
8.Определение реакций опор быстроходного вала.
Данные из предыдущего расчета:
Fr
1
= Fa
2
= 296,2H;Fr
2
= Fa
1
= 1153H;Ft
1
= Ft
2
= 1440H;
Первый этап компоновки дал:
L1
=17,6ммL2
= 44мм L3
= 100мм
Определяем нагрузку на опоры быстроходного вала:
а)вертикальная плоскость
SМXB
= 0; Fa
× + Fr
(l1
+l2
) – RBY
l2
= 0
RBY
= = = 953,70 H
SМxа
= 0;Fa
× + Fr
L1
– RAY
l2
= 0
RAY
= = = 657,5H
SX
=0 – RAY
+ RBY
– Fr
= 0– 657,5 + 953,7 – 296,2 = 0
Строим эпюру изгибающих моментов в характерных сечениях рисунок 2.
Мxc
= Fa
= 1153 × 20,57 = 237717,21 H мм = 237,72 H м
Мxc
= Fa
– Fr
l1
=1153 ×20,57 –296,2 × 17,6 =232504,09 Hмм =232,5Нм
б)горизонтальная плоскость.
SМYA
= 0; Ft
×Fr
(L1
+L2
) – RBX
L2
=0 RBX
= = =2016H
S МYB
=0; Ft
L1
– RAX
L2
=0RAX
= = =576H
Проверка:SY
= 0Ft
– RBX
+RAX
=0;1440 –2016 +576 = 0
в)Строим эпюру изгибающих моментов в характерных сечениях (рис. 2)
MYC
=0;
MYB
= Ft
×L1
=1440 ×17,6 =25,3Hм
MYA
= 0
г)Строим эпюру крутящих моментов в характерных сечениях (рис. 2)
Mк
= Mz
=Ft
× =1440× =296,2Hм
д)Определяем суммарные реакции опор.
RA
= = =887H
RB
= = = 2230H
е)Определяем суммарные изгибающие моменты в наиболее нагруженном сечении В.
MИВ
= = =2242 Н м
ж)Определяем приведенный момент.
МПР
= = = 2242 Н м
9.Проверочный расчет подшипников.
9.1Пригодность подшипников определяется сопоставлением расчетной динамической грузоподъемности с базовой. В результате расчетов имеем:
угловая скорость вала 2
=100,01рад/сек
осевая сила в зацеплении Fa
=1153H
реакция в подшипникахRXB
= 953,7H; RYB
= 2016H;
R = 887H; R = 2230H
Подшипники установлены в растяжку: обе опоры фиксирующие, крышки торцовые, регулирование подшипников круглой шлицевой гайкой. Эквивалентная динамическая нагрузка рассчитывается для каждого подшипника (RE
1
;RE
2
) с целью определения наиболее нагруженной опоры.
9.2Определяем коэффициент влияния осевого нагружения e по табл. К-29 [1] e =0,38.
9.3Определяем осевые составляющие радиальной нагрузки по формуле RS
=eRГ
RS1
= 0,83eRA
= 0,83 × 0,38 ×887 =279,8H
RS2
= 0,83eRB
= 0,83 × 0,38 ×2230 =703,3H
9.4 Определяем осевые нагрузки подшипников Ra
1
, Ra
2
.
По таблице 9.6 [1] в случае RS
1
/RS
2
, тогда Ra
1
= Ra
2
, т.е. Ra
1
=279,8Н,
Ra
2
= Ra
1
+ Fa
= 279,8 + 1153 = 1432,8H.
Вычисляем отношение , и сравниваем с коэффициентом «е»,
где V− коэффициент вращения.
При вращающемся внутреннем кольце подшипника согласно таб. 9.1[1] V =1.
= = 0,29 < 0,38; = =0,45 > 0,38
По соотношениюа)0,29 < 0,38 б)0,45> 0,38 согласно таб. 9.1 [1] выбираем формулу:
а) RE
= VRr
K
,
где K
− коэффициент безопасности по таб. 9.4 K
=1,1
− температурный коэффициент по таб. 9.5 температура до 100o
С KТ
=1,тогда:
RE
= VRr
K
= 1×953,7×1,1×1 =1049H
б)RE
= (XVRr
+ YRa
)×K
где по таб. 9.1 X =0,4; по таб. К-29 Y = 1,56;
K
RE
= (XVRr
+ YRa
)×K
×1+1,56×1432,8)×1,1×1 =2849H
10. Определяем динамическую грузоподъемность по формуле:
Сгр
= RE
,
где m =3,33 показатель степени для роликовых подшипников, a1
− коэффициент надежности. При безотказной работе подшипников g =90% a =1.
a23
− коэффициент учитывающий влияние качества подшипников a23
=0,6
n − частота вращения внутреннего кольца (об/мин)
Сrр
= RE
= 2849× =22366H
Cr
= 42,4 Cr
>Cr
р
, значит подшипник пригоден к применению.
11.Определяем реакция опор подшипников тихоходного вала.
Данные из предыдущих расчетов:
Ft
= 1440HFr
= 1153HFa
= 296,2H
Первый этап компоновки дал следующие результаты:
L1
= 40мм,L2
= 108мм
Для тихоходного вала определяем подшипники:
это подшипник легкой широкой серии 7208 (ГОСТ 27365 – 87).
d =40мм;D = 80мм;T = 20мм;угол контакта Ð 14o
;Cr
= 42,4 кН.
а)Плоскость XZ– RX
3
×(L2
+ L1
)+Ft
×L2
= 0
RX3
= = =389,2H
RX1
×(L2
+ L1
) – Ft
×L2
= 0
RX
1
= = =1050,8H
Проверка : RX
3
+ RX
1
– Ft
=0389,2 + 1050,8 – 1440 = 0
Определяем изгибающий момент:
MX
=Ft
×
Cтроим эпюру изгибающих моментов
б)Плоскость YZ– RY
3
×(L2
+ L1
) – Fr
×L1
+ Fa
× = 0
RY3
= = = – 182,94H
– RY1
×(L2
+L1
)+ Fr
×L1
+Fa
× = 0
RY
1
= = = 970,06H
Проверка: RY
3
– RY
1
+ Fr
=0–182,94 –970,06 + 1153 = 0
Cтроим эпюру изгибающих моментов
Определяем суммарную реакцию опор:
R1
= = = 1045H
R3
= = = 1066,6H
Определяем суммарные изгибающие моменты в сечении 2:
MИ2
= = = 185,2 H м
MПР
= = = 185,22 H м
12. Конструктивные размеры корпуса редуктора.
Толщина стенок корпуса и ребер жесткости в проектируемых малонагруженных редукторах (Т2
õ 500 Нм) с улучшенными передачами, определяется по формуле
d =1,8× / 6мм
где Т2
– вращающий момент на тихоходном валу
d =1,8× / 6мм
толщина стенок крышки и основания корпуса принимают такими же.
Взаимное расположение подшипников на быстроходном вале фиксируется установочной гайкой М36×1,5 с предохранительной шайбой. Подшипники размещаем в стакане, толщина которого dст
=10мм. Между шестернею и
внутреннем подшипником устанавливается шайба для предотвращения попадания жировой смазки в корпус редуктора. Очерчиваем всю внутреннюю стенку корпуса, сохраняя величины зазоров принятые в первом этапе компоновки Х=9 ,У=36.
На тихоходном валу устанавливается зубчатое колесо. Соединение с валом шпоночное. Колесо зафиксировано. С одной стороны оно упирается в утолщение вала, с другой стороны внутреннюю обойму подшипника.
На валу установлена распорная втулка. Одним концом опирается в ступицу колеса, другим во вращающуюся кольцо подшипника. Определяем глубину гнезда под подшипник.
Lr= 1.5 T2
;
где Т2 ширина подшипника Т2 = 20 мм
Lr= 1.5 × 20 = 30мм
По таблице 10.17 лит.1 определяем диаметры болтов для корпуса редуктора.
d1 =M14; d2=M12; d3=M10 ; d4=M8 ; d5=M5.
Длина L определяем конструктивно.
13. Определение геометрических размеров шпонок и проверка прочности шпоночного соединения.
По табл. 42 лит. 1определяем размер шпонок.Быстроходный вал:d =30мм b=10; h=8;фаска 0,5мм.
Для тихоходного вала d =48мм b=14 h=9 фаска 0,5мм.
Шпонки призматические, со скругленными торцами. Материал шпонок: сталь 45 нормализация. Проверка ведётся на смятие. Проверяем соединение вала с колесом на тихоходном валу по формуле:
см = õ [см
] где,
а) Ft
–
окружная сила
б) Асм
=(0,94h-t1
)Lр
– площадь смятия в мм2
в) Lр
= L – b –рабочая длина шпонки со скруглёнными торцами L – полная длина шпонки определена на конструктивной компоновке.
[см
] =110… 190 Н/мм2
Асм
=(0,94 х 9- 5,5 )26 =76,96.
см
= =19õ[см
]
14. Выбор способа смазывания ,сорта масла и его количества.
Тихоходный вал:
Для редукторов общего назначения применяют непрерывное смазывание жидким маслом картерным непроточным способом (окунанием). Сорт масла по табл. 10.29 лит.1 И-Г-С-68.
Количество масла: из расчёта 0,4…0,8л масла на один киловатт
Быстроходный вал:
Подшипники смазываем пластичной смазкой ,которую закладывают в подшипниковые камеры при сборке . Периодически смазку пополняют шприцом через прессмаслёнку. Сорт смазки − солидол УС-2.
15.Проверочный расчёт стяжных болтов подшипниковых узлов.
Стяжные болты рассчитывают напрочность по эквивалентным напряжениям на совместное действие растяжения и кручение по формуле:
экв. =õ [ ]
а) Fр
− расчётная сила затяжки винтов ,обеспечивающая нераскрытие стыка под нагрузкой
Fр
= [ К3 ( 1- х ) + х ]Fв
Здесь Fа
= 0,5Rу
− сила воспринимаемая одним болтом, где Rу-большая из реакций в вертикальной плоскости в опорах реакций в вертикальной плоскости в опорах подшипников. К3=1,25…2-коэффициент затяжки. Х=0,4… 0,5
б) А − площадь опасного сечения болта.
А =
где dр
= d2 – 0.94р − расчётный диаметр болта, d2
− наружный диаметр болта, р − шаг резьбы.
В[ ] − допускаемое напряжение при некоторой затяжке до 16мм []( 0,2…0,25) сигма т а) Определяем силу, приходящуюся на один болт:
Fв
= = 525 Н
Определяем площадь опасного сечения болта:
б) Принимаем К3 =1,5 (постоянная нагрузка ); х = 0,27 ( соединение чугунных деталей без прокладок ).
в) Определяем механические характеристики материала болтов: предел прочности [в
] =500 н / мм2
в квадрате; предел текучести T
=300 Нмм2
; допускаемое напряжение [] =0,25х=75Н/мм2
.
г) Определяем расчётную силу затяжки болтов :
Fр
= [ К3
( 1- х) + х] Fв
= [1,5×(1- 0,27) + 0,27]× 525 =716,6 Н.
г) Определяем площадь опасного сечения болта:
А= = = 84,2 мм2
д) Определяем эквивалентные напряжения:
экв
= 11,1Н / мм 2
< []
Расчёт болтов удовлетворяет нужного запаса прочности.
16. Уточняющий расчёт валов.
Наиболее опасный участок на быстроходном валу это точка №1, место приложений реакций внутреннего подшипника, поэтому расчёт будем вести на этом участке вала.
Данные из предыдущих расчётов:
Быстроходный вал.
MX
=25,3 Н/мMу
=232,5 Н/м Мк
=2240 Н/м
Находим суммарные изгибающие моменты:
М = = 233,9Н/м
а) Определяем момент сопротивления сечения вала.
W = 0,1d3
= 0,1×403
=6400мм3
б) Определяем напряжения в опасном сечении вала.
а
=и
== =36,5Н/мм2
в) Определяем касательные напряжения, они изменяются по от нулевому циклу, при котором амплитуда цикла
равна половине расчётных напряжений кручения к
:
= = =306,8Н/мм2
г) Определяем коэффициент концентрации нормальных и касательных напряжений для расчётного сечения вала. Для валов без поверхностного упрочнения коэффициенты концентрации нормальных и касательных напряжений определяют по формуле:
(К
)D
=+ КF
-1; (К
)D
=+ КF -1;
где К
иК
− эффективные коэффициенты. Они определяются по таблице 11.2 [1] .
Кd
- коэффициент влияния абсолютных размеров поперечного сечения по табл. 11.3 [1] .
КF
- коэффициент влияния шероховатости таб.11.5 [1].
(К
)D
=+ КF
−1 =3,95 +1,10 −1=4,05; (К
)D
= + КF −1 =2,8+1,10−1=2,9
д) Определяем пределы выносливости в расчётном сечении вала по формуле:
(-1
)D
=; ( 1
)D
=; где (-1
) и 1
= 0.58-1
− пределы
выносливости гладких образцов при симметричном цикле изгиба и кручения.
(-1
)D
= =37,2; ( 1
)D
= =51,8;
е) Определяем коэффициенты запаса прочности по нормальным и касательным напряжениям:
S
; S
S
= 6,5 ; S
ж) Определяем общий коэффициент запаса прочности в опасном сечении:
s = /[s];
где [s]= 1,3…1,5 высокая достоверность расчёта;[S]=1,6…2,1 менее точная достоверность расчёта.
s = = 6,3; S[S]; Проверочный расчёт на прочность дал удовлетворительные результаты.
17. Сборка редуктора.
Перед сборкой внутреннюю полость корпуса редуктора тщательно очищают и покрывают маслостойкой краской. Сборку производят в соответствии с чертежом общего вида редуктора, начиная с узлов валов:
− на быстроходный вал одевают мазеудерживающую шайбу, затем устанавливают внутренний подшипник, потом наружный, предварительно нагретые в масле до 80-100 С;
− в тихоходный вал закладывают шпонку, затем напрессовывают зубчатое колесо до упора в бурт вала;
− далее надевают распорную втулку и устанавливают подшипники, предварительно нагретые в масле.
Собранные валы укладывают в основание корпуса редуктора и надевают крышку корпуса, покрывая предварительно поверхности стыка крышки и корпуса спиртовым лаком. Для центровки устанавливают крышку на корпус с помощью двух конических штифтов; затягивают болты, крепящие крышку к корпусу. После этого на тихоходный вал надевают распорное кольцо, в подшипниковые камеры закладывают пластичную смазку, ставят крышки подшипников. Регулирующим болтом бугеля, регулируют зазор между шестерней и колесом, при этом проверяют проворачиванием валов отсутствие заклинивания подшипников (валы должны проворачиваться от руки) и закрепляют крышки винтами. Затем фиксируют стопорной шайбой и винтами.
Затем ввертывают пробку масло спускного отверстия с прокладкой и жезловый масло указатель. Заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой; закрепляют крышку болтами. Собранный редуктор обкатывают и подвергают испытанию на стенде по программе, устанавливаемой техническими условиями.
|