Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Проектирование привода к конвейеру из конического редуктора и цепной передачи

Название: Проектирование привода к конвейеру из конического редуктора и цепной передачи
Раздел: Промышленность, производство
Тип: реферат Добавлен 22:36:07 03 декабря 2010 Похожие работы
Просмотров: 54 Комментариев: 20 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Задание

Спроектировать привод к конвейеру по схеме (рис.1). Механизм привода состоит из конического редуктора и цепной передачи.

Исходные данные для проектирования:

1.Мощность на ведомой звездочке N2 = 2,5 кВт

2.Угловая скорость на ведомой звездочке = 8 рад/с

Рис.1

Выбор электродвигателя. Кинематический и силовой расчет.

1. Определяем общий КПД привода передачи:

общ м × 2 оп × цп × кп = 0,98 × 0,992 × 0,92 × 0,96 = 0,85

м − КПД муфты

оп − КПД подшипников

цп − КПД цепной передачи

кп − КПД конической передачи

2. Требуемая мощность электродвигателя будет равна:

Pэл = = = 2,94кВт

3. Выбираем электродвигатель:

трехфазный асинхронный электродвигатель серии 4АМ предназначенные для привода машин и механизмов общепромышленного применения.

Табл.1

тип электродвигателя Мощность кВт. Число оборотов об/мин
4АМ90L2У3 3 2840
4АМ100S4У3 3 1435
4АМ112МA6У3 3 955
4АМ112MB8У3 3 700

4.Определяем частоту вращения выходного вала привода:

nвых = = = 76,43 об/мин

5.Определяем передаточное число привода для всех вариантов при заданной номинальной мощности:

iпер1 = = =37,16iпер2 = = =18,78

iпер3 = = = 12,5iпер4 = = =9,16

6.Производим разбивку передаточного числа привода по ступеням, принимая для всех вариантов передаточное число редуктора постоянным и равным iзп = 3,15.


цп1 = = =11,8iцп2 = = =5,96

iцп3 = = = 3,97iцп4 = = = 2,91

Табл.2

Передаточное число Варианты
1 2 3 4
привода iпер 37,16 18,78 12,5 9,16
конического редуктора iзп 3,15 3,15 3,15 3,15
цепной передачи iцп 11,8 5,96 3,97 2,91

Анализируя полученные значения передаточных чисел, приходим к выводу:

a)первый вариант (i = 37,16; nном = 2840 об/мин) затрудняет реализацию принятой схемы двухступенчатого привода посредством конического редуктора

и цепной передачи из-за большого передаточного числа i всего двигателя.

б)во втором варианте (i = 18,78; nном = 1435 об/мин) получилось все таки большое значение передаточного числа цепной передачи, уменьшение которого за счет увеличения передаточного числа редуктора нежелательно.

в)четвертый вариант (i = 9,16; nном = 700 об/мин) не рекомендуется для приводов общего назначения ввиду того, что двигатели с низкими частотами оборотов весьма металлоемки.

г)из рассмотренных четырех вариантов предпочтительнее всего третий:

i= 12,5nном = 955об/мин.

7.Определяем максимально допустимое отклонение частоты вращения приводного вала рабочей машины nрм , об/мин


nрм = = = 3,82 об/мин

8.Определяем допускаемую частоту вращения приводного вала рабочей машины с учетом отклонения [nрм ], об/мин:

[nрм ] = nвых + nрм = 76,43 + 3,82 = 80,25 об/мин

9. Определяем фактическое передаточное число привода iф :

iф = = =11,84

10.Уточняем передаточные числа закрытой и открытой передач в соответствии с выбранным вариантом разбивки передаточного числа привода (при этом неизменным оставим iзп = 3,15):

iоп = = =3,78

Таким образом, выбираем электродвигатель 4АМ112МA6У3 с nном = 955 об/мин и мощностью Рном = 3кВт.

1. Определим мощность, число оборотов и крутящий момент на быстроходном валу:

PБ = Pэл × м = 3 × 0,98 = 2,94 кВтnБ = nэл = 955 об/мин;

Б = = = 100,01 рад/секMКБ = = = 29,4 Hм

на тихоходном валу:


PТ = PБ × кп × 2 оп = 2,94× 0,96 × 0,992 = 2,77 кВт

nТ = = = 303,17 об/минТ = = = 31,75 рад/сек

MКТ = = = 92,6 Hм

Выбор твердости, термообработки и материала колес.

1)В соответствии с рекомендациями из таблицы 3.1 [1] при мощности двигателя Р £ 7,5кВт выбираем материал для зубчатой пары колес. При этом будем учитывать, что разность средних твердостей рабочих поверхностей зубьев шестерни и колеса при твердости материала Н £ 350 НВ в передачах с прямыми зубьями составляет Δср = НВ1ср − НВ1ср = 20 ÷ 50 :

шестерня:

сталь 45 улучшение

колесо:

сталь 45 улучшение


2)Из таблицы 3.2 [1] выбираем интервал твердости зубьев шестерни НВ1 и колеса НВ2 ,:

НВ1 =НВ2 = 179÷262 НВ

3)Определяем среднюю твердость зубьев для шестерни и колеса:

шестерня:

HBср1 = = 193

колесо:

НВср2 = НВср1 − Δср

HBср2 = 193 − 20 = 173


Определение допускаемых контактных напряжений []к , H/мм2

Определяем допускаемые контактные напряжения для зубьев шестерни []H1 и колеса []H2 по формуле шестерни напряжения


[]к =[но ]× , где

[SH ] – коэффициент безопасности, равный 1,1для однородных материалов.

кН L – коэффициент долговечности, равный 1,8 при t =10000час

[но ]= Hв r ×1,8+67

[ sно ]2 =173×1 ,8 +67=378,40
Находим:
[ sк 2 ]= [ sно ]2 × =378,40 × =619,2
[но ]1 =193×1,8+67=414,40

[к1 ]= [но ]1 × =414,40 × =678,11

Определение допускаемых напряжений изгиба []u

[]u = [ро ]× ,

где кр L =1,1,крС = 1,0 − коэффициент приложения

нагрузки, [Sр ]=1,75 − для поковки, [ро ] − предел направления изгиба.

[ро ] =1,03× =1,03× = 188,49 H/мм2

следовательно:

[] = [ро ]× = 188,49 × = 118,48H/мм2

Расчет закрытой конической зубчатой передачи.

1.Определим главный параметр − внешний делительный диаметр колеса de 2 , :

de 2 / 165 × ,где кн = 1 (для прямозубых передач)

н = 1,0 − коэффициент вида конических колес (прямозубые)

de 2 / 165 × =165 × =150,63

округляем до de 2 = 150 мм (ГОСТ 6636-69)

2.Определяем углы делительных конусов шестерни Ð и колеса Ð2 :

Ð2 = arctgi = arctg 3,15 = 72,3874 o , Ð o −Ð2 =o −72,3874 o =17,6126o

Определение внешнего конусного расстояния Re , мм:

Re = = = 78,69

4.Определение ширины зубчатого венца шестерни и колеса b, мм:

b = R Re ,где R =0,285 −коэффициент ширины венца

b = R Re = 0,285×78,69=22,42

округляем до b = 22мм (ГОСТ 6636-69)

5.Определение внешнего окружного модуля me , мм:


me = ,

где кF =1 – коэффициент, учитывающий распределение нагрузки по ширине венца (прямозубые).

F =0,85 – коэффициент, вида конических колес (прямозубые).

me = = =3,9

6.Определение числа зубьев колеса z2 и шестерни z1 :

z2 = = =38,46z1 = = =12,2

так как в рекомендациях [1] по условиям уменьшения шума и отсутствия подрезания зубьев рекомендуется принять z1 / 18 (прямозубая пара колес), для силовых конических передач принимаем модуль me =2 [1].

Следовательно:

z2 = = =75z1 = = =24

7.Определение фактического передаточного числа iф и проверка его отклонения Δi от заданного i:

iф = = =3,125Δiф = ×100% = ×100% =0,6% £ 4%

8.Определение действительных углов делительных конусов шестерни Ð1 и колеса Ð2 :


Ð2 = arctgiф = arctg 3,125 =72,2553o1 = 90o –2 = 90o – 72,2553o =17,7447o

9.Определение фактических внешних диаметров шестерни и колеса, мм:

de1 = me × z1 =2×24 =48de2 = me × z2 =2×75 = 150

10.Определение вершин зубьев, мм:

dbe1 = de1 + [2(1+ xe1 )cos 1 ]×me , гдеxe1 = 0

dbe1 = de1 + [2(1+ xe1 )cos 1 ]×me = 48 +[2(1+0)cos 17,7447o ]×2 = 51,81

dbe2 = de1 + [2(1– xe1 )cos 2 ]×me , гдеxe2 = 0

dbe2 = de2 + [2(1 – xe2 )cos 2 ]×me = 150 +[2(1 – 0)cos 72,2553o ]×2 = 151,22

11.Определение размеров впадин, мм:

dfe 1 = de 1 – [2(1,2 – xe 1 ) cos1 ]× me , где xe 1 = 0

dfe1 = de1 – [2(1,2 – xe1 ) cos 1 ]× me =48 – [2(1,2 – 0)cos17,7447o ]×2=43,43

dfe2 = de2 – [2(1,2 + xe1 ) cos 2 ]× me , гдеxe2 = 0

dfe2 = de2 – [2(1,2 + xe2 ) cos 2 ]× me =150 – [2(1,2 + 0)cos72,2553o ]×2=148,54

12.Определение среднего делительного диаметра шестерни d1 и колеса d2 , мм:

d1 ≈ 0,857×de 1 = 0,857 × 48 = 41,14 d2 ≈ 0,857×de 2 =0,857×150=128,55

Проверочный расчёт.

а ) Условия пригодности заготовок колёс:


Dзаг £Dпред ; Sзаг £Sпред По табл.3.2 [1]. Dпред и Sпред для любых размеров.

б) Проверяем контактные напряжения по формуле:

н = 470×£ []H где:

1) - окружная сила в зацеплении, F1 = =1440Н;

2) KH = 1 − коэффициент ,учитывающий распределение нагрузки между зубьями.

3) KH − коэффициент динамической нагрузки. Определяется по табл. 4.3 [1] в зависимости от окружной скорости колёс, где скорость колеса определяется по формуле:

 = м/с и степени точности передачи

определяем по табл. 4.2 и табл4.3[1]. KH =1,08

4) KH =1.

н = 470× = 590Hмм2 £ 619,2Hмм2

Допускаемая недогрузка передачи (н £ [  не более 10% и перегрузка


(н / [  до 5% . = 4,72%.

б) Проверяем напряжения изгиба зубьев шестерни и колеса по формулам:

F 2 = Y×Y и

F 1 =F 2 × £ [F 1 ; где :

1) значение b =22мм ; m=2мм;F = 0,85 ; Ft =1440Н. КF =1 .

2) КFa = 1 − коэффициент ,учитывающий распределение нагрузки между зубьями прямозубых колёс.

3) КF =1,08 − коэффициент динамической нагрузки определяется аналогично коэффициенту − KH

4) YF 1 и YF 2 − коэффициенты формы зуба и колеса. Определяются по табл. 4.7

интерполированием в зависимости от эквивалентного числа зубьев шестерни Z и колеса Z :

Z = = =25,2 YF 1 =3,67;

Z = = = 246,01 Y= 3,63;

5) Y = 1 − коэффициент, учитывающий наклон зуба.

6) []F 1 и []F 2 − допускаемые напряжения изгиба шестерни и колеса.


[]F2 =3,63 × 1 × ×1 ×1 × 1,08 = 150,9 Нмм2

[]F 1 = 150,9 × = 152,6 £[]F 1 ; F 1 =152,6 Нмм2 £[]F 1 =416 Нмм2

F 2 = 150,9Hмм2 £[]F 2 =455б8Hмм2 .

При проверочном расчёте F значительно меньше [F , что это допустимо ,так как нагрузочная способность большинства зубчатых передач ограничивается контактной прочностью. Проверочный расчёт дал положительный результат.

Полученные результаты параметров конической зубчатой передачи сводим в таблицу №3:

Табл. 3

Проектный расчет
Параметр Значение Параметр Значение
Внешнее конусное расстояние Re 78,69

Внешний делительный диаметр:

шестерни de 1

колеса de 2

48

150

Внешний окружной модуль me 2
Ширина зубчатого венца b 22

Внешний диаметр окружности вершин:

шестерни dbe 1

колеса dbe 2

51,81

151,22

Число зубьев:

шестерни z1

колеса z2

24

75

Вид зубьев прямой

Внешний диаметр окружности впадин:

шестерни dfe 1

колеса dfe 2

43,43

148,54

Угол разделительного конуса, град:

шестерни 1

колеса 2

17,7447o

72,2553o

Средний делительный диаметр:

шестерни d1

колеса d2

41,14

128,55

Предварительное определение геометрических параметров валов и их расчет на прочность.

1. Выбор материала.

В проектируемых редукторах рекомендуется применять [1] термически обработанные среднеуглеродистые и легированные стали 45, 40Х, одинаковые для быстроходного и тихоходного вала. Выбираем по таблице 3.2 [1] сталь 40Х улучшенная со следующими механическими характеристиками:

Материал В Т –1
Сталь 40X Н/мм2
790 640 375

Проектный расчет валов выполняем по напряжениям кручения (как при чистом кручении) т.е. при этом не учитываем напряжения изгиба, концентраций напряжений и переменность напряжений во времени (циклы напряжений).

Поэтому для компенсации приближенности этого метода расчета допускаемые напряжения на кручение применяем заниженными: []к =10…20 Н/мм2 . При этом меньшие значения []к – для быстроходных валов, большие []к – для тихоходных.

2.Определение сил действующих в зацеплении.

Окружные силы на шестерне и колесе:

Ft 1 = Ft 2 = = =1440 H

Радиальная сила на шестерне:

Fr 1 = Ft 1r ,

где r – коэффициент радиальной силы

r = 0,44cos – 0,7sin =0,44cos17,7447 – 0,7sin17,7447=0,206

Fr 1 = Ft 1r =1440 × 0,206 =296,2Н


Осевая сила на шестерне:

Fa 1 = Ft 1a ,

где a – коэффициент осевой силы

a = 0,44sin + 0,7cos =0,44 sin17,7447 + 0,7cos17,7447=0,801

Fa 1 = Ft 1r =1440 × 0,801=1153H

Радиальная сила на колесе:

Fr 2 = Fa 1 = 1153H

Осевая сила на колесе:

Fa 2 = Fr 1 = 296,2Н

3.Определение размеров ступеней быстроходного вала, мм.

Согласно таблицы №7.1 [1], диаметр d1 выходного конца быстроходного вала, соединенного с двигателем через муфту, определяется по формуле:

a)d1 = = = 24,5

d1 выбираем равным 30мм.

б)d2 = d1 + 2t =30 + 2×2,2 = 34,4мм, где t − высота буртика

d5 определяем в зависимости от d2 по табл. 10.11[1] для регулирующей гайки с мелкой метрической резьбой d5 = 36мм.(М36 × 1,5).

в)для быстроходного вала конического редуктора на 4-й ступени устанавливаются два подшипника и диаметр d4 равен диаметру d внутреннего кольца подшипника:


d4 = d5 + (2…4) = 36 +4 = 40мм

г) d3 = d4 + 3,2r = 40+3,2×2 =46,4мм,

где r − координата фаски внутреннего кольца подшипника.

д)под полумуфту длина выходного конца быстроходного вала:

l1 = (1,0…1,5)d1 = 1×30 = 30мм

е)l2 = 0,6 ×d4 = 0,6×40 =24мм

ж)l3 =23,56мм , l4 = 53,64ммопределено графически.

з)l5 = 0,4 × d4 = 0,4 × 40 = 16мм

4.Определение размеров ступеней тихоходного вала, мм.

Согласно таблицы №7.1 [1], диаметр d2 выходного конца тихоходного вала, соединенного цепной передачей с исполнительным механизмом, определяется по формуле:

dt 1 = = = 28,5

d1 выбираем равным 30мм.

d2 = d4 = 40мм,d3 = 48мм,d5 = 43мм,L1 = 30мм,

L2 = 37,5мм,L3 – определено графически,L4 = 36мм,L5 = 16мм.

5.Конструктивные размеры шестерни и колеса

Шестерню выполняем за одно с валом. Коническое зубчатое колесо кованное. Его размеры:

диаметр ступицы dст ≈(1,55…1,6)d≈ 48×1,55 = 76мм

длина ступицы Lст ≈ (1,1…1,5)d3 =54мм

толщина обода δo ≈ (3¸4)×m =8мм

толщина диска С =(0,1¸0,17)Re = 14 мм

6.Первый этап компоновки редуктора.

Разработка чертежа общего вида редуктора.

а)Изисходныхданных Re , de1 , de2 , δ1 , δ2 , me , hae = me , hfe = 1,2me . Строим коническую пару зубчатой передачи.

б)Прочерчиваем контур внутренней поверхности стенок корпуса редуктора с зазором x от вращающихся поверхностей колеса для предотвращения задевания;

x = + 3 мм (x должен быть > 8 мм)

x = 9 мм

Расстояние y между дном и шестерней принимаем y/ 4x будет 36 мм.

в)Вычерчиваем ступени вала на соответствующих осях по размерам d и L, полученным в проектном расчете валов.

г)При установке радиально-упорных подшипников необходимо учитывать, что радиальные реакции считают приложенными к валу в точках пересечения нормалей, проведенных к середине контактных площадок. Для однородных конических подшипников по формуле

a1 = 0,5 ×(T + l)

a1 = 0,5 ×(20 + ×0,38) = 17,6 мм

a2 » 2,5 × a1 = 2,5 ×17,6 = 44 мм

д)Вал тихоходный вычерчивается впоследствии от 5-й к 1-й ступени, при этом длины 5-й и 3-й ступени (L5 , L3 ) вала получают конструктивно. Третью ступень вала d3 c насиженным колесом следует расположить противоположно от выходного конца вала d, что обеспечить более равномерное распределение сил между подшипниками.

е)Выбираем способ смазывания. Зацепление зубчатой пары – окунание зубчатого колеса в масло. Для подшипников в пластичный смазочный материал. Раздельное смазывание принято потому, что один из подшипников ведущего вала удален и это затруднит попадание масляных брызг.

7.Выбор подшипников

По таблице К-29 [1] для конической передачи при n<1500 об/мин применяется подшипник роликовый конический однорядный. Выбираем типоразмер подшипника по величине диаметра внутреннего кольца, равного диаметру d =40мм.

Это подшипник легкой широкой серии 7208 (ГОСТ 27365 – 87).

d =40мм;D = 80мм;T = 20мм;угол контакта Ð 14o ;Cr = 42,4 кН.

8.Определение реакций опор быстроходного вала.

Данные из предыдущего расчета:

Fr 1 = Fa 2 = 296,2H;Fr 2 = Fa 1 = 1153H;Ft 1 = Ft 2 = 1440H;

Первый этап компоновки дал:

L1 =17,6ммL2 = 44мм L3 = 100мм

Определяем нагрузку на опоры быстроходного вала:

а)вертикальная плоскость

XB = 0; Fa × + Fr (l1 +l2 ) – RBY l2 = 0

RBY = = = 953,70 H

= 0;Fa × + Fr L1 – RAY l2 = 0

RAY = = = 657,5H

SX =0 – RAY + RBY – Fr = 0– 657,5 + 953,7 – 296,2 = 0


Строим эпюру изгибающих моментов в характерных сечениях рисунок 2.

Мxc = Fa = 1153 × 20,57 = 237717,21 H мм = 237,72 H м

Мxc = Fa – Fr l1 =1153 ×20,57 –296,2 × 17,6 =232504,09 Hмм =232,5Нм

б)горизонтальная плоскость.

YA = 0; Ft ×Fr (L1 +L2 ) – RBX L2 =0 RBX = = =2016H

S МYB =0; Ft L1 – RAX L2 =0RAX = = =576H

Проверка:SY = 0Ft – RBX +RAX =0;1440 –2016 +576 = 0

в)Строим эпюру изгибающих моментов в характерных сечениях (рис. 2)

MYC =0;

MYB = Ft ×L1 =1440 ×17,6 =25,3Hм

MYA = 0

г)Строим эпюру крутящих моментов в характерных сечениях (рис. 2)

Mк = Mz =Ft × =1440× =296,2Hм

д)Определяем суммарные реакции опор.


RA = = =887H

RB = = = 2230H

е)Определяем суммарные изгибающие моменты в наиболее нагруженном сечении В.

MИВ = = =2242 Н м

ж)Определяем приведенный момент.

МПР = = = 2242 Н м

9.Проверочный расчет подшипников.

9.1Пригодность подшипников определяется сопоставлением расчетной динамической грузоподъемности с базовой. В результате расчетов имеем:

угловая скорость вала 2 =100,01рад/сек

осевая сила в зацеплении Fa =1153H

реакция в подшипникахRXB = 953,7H; RYB = 2016H;

R = 887H; R = 2230H

Подшипники установлены в растяжку: обе опоры фиксирующие, крышки торцовые, регулирование подшипников круглой шлицевой гайкой. Эквивалентная динамическая нагрузка рассчитывается для каждого подшипника (RE 1 ;RE 2 ) с целью определения наиболее нагруженной опоры.

9.2Определяем коэффициент влияния осевого нагружения e по табл. К-29 [1] e =0,38.

9.3Определяем осевые составляющие радиальной нагрузки по формуле RS =eRГ


RS1 = 0,83eRA = 0,83 × 0,38 ×887 =279,8H

RS2 = 0,83eRB = 0,83 × 0,38 ×2230 =703,3H

9.4 Определяем осевые нагрузки подшипников Ra 1 , Ra 2 .

По таблице 9.6 [1] в случае RS 1 /RS 2 , тогда Ra 1 = Ra 2 , т.е. Ra 1 =279,8Н,

Ra 2 = Ra 1 + Fa = 279,8 + 1153 = 1432,8H.

Вычисляем отношение , и сравниваем с коэффициентом «е»,

где V− коэффициент вращения.

При вращающемся внутреннем кольце подшипника согласно таб. 9.1[1] V =1.

= = 0,29 < 0,38; = =0,45 > 0,38

По соотношениюа)0,29 < 0,38 б)0,45> 0,38 согласно таб. 9.1 [1] выбираем формулу:

а) RE = VRr K ,

где K − коэффициент безопасности по таб. 9.4 K =1,1

− температурный коэффициент по таб. 9.5 температура до 100o С KТ =1,тогда:

RE = VRr K = 1×953,7×1,1×1 =1049H

б)RE = (XVRr + YRa )×K

где по таб. 9.1 X =0,4; по таб. К-29 Y = 1,56;


K  

RE = (XVRr + YRa )×K ×1+1,56×1432,8)×1,1×1 =2849H

10. Определяем динамическую грузоподъемность по формуле:

Сгр = RE ,

где m =3,33 показатель степени для роликовых подшипников, a1 − коэффициент надежности. При безотказной работе подшипников g =90% a =1.

a23 − коэффициент учитывающий влияние качества подшипников a23 =0,6

n − частота вращения внутреннего кольца (об/мин)

С = RE = 2849× =22366H

Cr = 42,4 Cr >Cr р , значит подшипник пригоден к применению.

11.Определяем реакция опор подшипников тихоходного вала.

Данные из предыдущих расчетов:

Ft = 1440HFr = 1153HFa = 296,2H

Первый этап компоновки дал следующие результаты:

L1 = 40мм,L2 = 108мм

Для тихоходного вала определяем подшипники:

это подшипник легкой широкой серии 7208 (ГОСТ 27365 – 87).

d =40мм;D = 80мм;T = 20мм;угол контакта Ð 14o ;Cr = 42,4 кН.


а)Плоскость XZ– RX 3 ×(L2 + L1 )+Ft ×L2 = 0

RX3 = = =389,2H

RX1 ×(L2 + L1 ) – Ft ×L2 = 0

RX 1 = = =1050,8H

Проверка : RX 3 + RX 1 – Ft =0389,2 + 1050,8 – 1440 = 0

Определяем изгибающий момент:

MX =Ft ×

Cтроим эпюру изгибающих моментов

б)Плоскость YZ– RY 3 ×(L2 + L1 ) – Fr ×L1 + Fa × = 0

RY3 = = = – 182,94H

– RY1 ×(L2 +L1 )+ Fr ×L1 +Fa × = 0

RY 1 = = = 970,06H

Проверка: RY 3 – RY 1 + Fr =0–182,94 –970,06 + 1153 = 0

Cтроим эпюру изгибающих моментов

Определяем суммарную реакцию опор:

R1 = = = 1045H

R3 = = = 1066,6H

Определяем суммарные изгибающие моменты в сечении 2:

MИ2 = = = 185,2 H м

MПР = = = 185,22 H м

12. Конструктивные размеры корпуса редуктора.

Толщина стенок корпуса и ребер жесткости в проектируемых малонагруженных редукторах (Т2 õ 500 Нм) с улучшенными передачами, определяется по формуле

d =1,8× / 6мм

где Т2 – вращающий момент на тихоходном валу

d =1,8× / 6мм

толщина стенок крышки и основания корпуса принимают такими же.

Взаимное расположение подшипников на быстроходном вале фиксируется установочной гайкой М36×1,5 с предохранительной шайбой. Подшипники размещаем в стакане, толщина которого dст =10мм. Между шестернею и

внутреннем подшипником устанавливается шайба для предотвращения попадания жировой смазки в корпус редуктора. Очерчиваем всю внутреннюю стенку корпуса, сохраняя величины зазоров принятые в первом этапе компоновки Х=9 ,У=36.

На тихоходном валу устанавливается зубчатое колесо. Соединение с валом шпоночное. Колесо зафиксировано. С одной стороны оно упирается в утолщение вала, с другой стороны внутреннюю обойму подшипника.

На валу установлена распорная втулка. Одним концом опирается в ступицу колеса, другим во вращающуюся кольцо подшипника. Определяем глубину гнезда под подшипник.

Lr= 1.5 T2 ;

где Т2 ширина подшипника Т2 = 20 мм

Lr= 1.5 × 20 = 30мм

По таблице 10.17 лит.1 определяем диаметры болтов для корпуса редуктора.

d1 =M14; d2=M12; d3=M10 ; d4=M8 ; d5=M5.

Длина L определяем конструктивно.

13. Определение геометрических размеров шпонок и проверка прочности шпоночного соединения.

По табл. 42 лит. 1определяем размер шпонок.Быстроходный вал:d =30мм b=10; h=8;фаска 0,5мм.

Для тихоходного вала d =48мм b=14 h=9 фаска 0,5мм.

Шпонки призматические, со скругленными торцами. Материал шпонок: сталь 45 нормализация. Проверка ведётся на смятие. Проверяем соединение вала с колесом на тихоходном валу по формуле:

см = õ [см ] где,

а) Ft окружная сила

б) Асм =(0,94h-t1 )Lр – площадь смятия в мм2

в) Lр = L – b –рабочая длина шпонки со скруглёнными торцами L – полная длина шпонки определена на конструктивной компоновке.

[см ] =110… 190 Н/мм2

Асм =(0,94 х 9- 5,5 )26 =76,96.

см = =19õ[см ]

14. Выбор способа смазывания ,сорта масла и его количества.

Тихоходный вал:

Для редукторов общего назначения применяют непрерывное смазывание жидким маслом картерным непроточным способом (окунанием). Сорт масла по табл. 10.29 лит.1 И-Г-С-68.

Количество масла: из расчёта 0,4…0,8л масла на один киловатт

Быстроходный вал:

Подшипники смазываем пластичной смазкой ,которую закладывают в подшипниковые камеры при сборке . Периодически смазку пополняют шприцом через прессмаслёнку. Сорт смазки − солидол УС-2.

15.Проверочный расчёт стяжных болтов подшипниковых узлов.

Стяжные болты рассчитывают напрочность по эквивалентным напряжениям на совместное действие растяжения и кручение по формуле:

экв. =õ [ ]

а) Fр − расчётная сила затяжки винтов ,обеспечивающая нераскрытие стыка под нагрузкой

Fр = [ К3 ( 1- х ) + х ]Fв


Здесь Fа = 0,5Rу − сила воспринимаемая одним болтом, где Rу-большая из реакций в вертикальной плоскости в опорах реакций в вертикальной плоскости в опорах подшипников. К3=1,25…2-коэффициент затяжки. Х=0,4… 0,5

б) А − площадь опасного сечения болта.

А =

где dр = d2 – 0.94р − расчётный диаметр болта, d2 − наружный диаметр болта, р − шаг резьбы.

В[ ] − допускаемое напряжение при некоторой затяжке до 16мм []( 0,2…0,25) сигма т а) Определяем силу, приходящуюся на один болт:

Fв = = 525 Н

Определяем площадь опасного сечения болта:

б) Принимаем К3 =1,5 (постоянная нагрузка ); х = 0,27 ( соединение чугунных деталей без прокладок ).

в) Определяем механические характеристики материала болтов: предел прочности [в ] =500 н / мм2 в квадрате; предел текучести T =300 Нмм2 ; допускаемое напряжение [] =0,25х=75Н/мм2 .

г) Определяем расчётную силу затяжки болтов :

Fр = [ К3 ( 1- х) + х] Fв = [1,5×(1- 0,27) + 0,27]× 525 =716,6 Н.

г) Определяем площадь опасного сечения болта:

А= = = 84,2 мм2


д) Определяем эквивалентные напряжения:

экв  = 11,1Н / мм 2 < []

Расчёт болтов удовлетворяет нужного запаса прочности.

16. Уточняющий расчёт валов.

Наиболее опасный участок на быстроходном валу это точка №1, место приложений реакций внутреннего подшипника, поэтому расчёт будем вести на этом участке вала.

Данные из предыдущих расчётов:

Быстроходный вал.

MX =25,3 Н/мMу =232,5 Н/м Мк =2240 Н/м

Находим суммарные изгибающие моменты:

М = = 233,9Н/м

а) Определяем момент сопротивления сечения вала.

W = 0,1d3 = 0,1×403 =6400мм3

б) Определяем напряжения в опасном сечении вала.

а =и  == =36,5Н/мм2

в) Определяем касательные напряжения, они изменяются по от нулевому циклу, при котором амплитуда цикла  равна половине расчётных напряжений кручения к :

= = =306,8Н/мм2

г) Определяем коэффициент концентрации нормальных и касательных напряжений для расчётного сечения вала. Для валов без поверхностного упрочнения коэффициенты концентрации нормальных и касательных напряжений определяют по формуле:

)D =+ КF -1; (К )D =+ КF -1;

где К иК − эффективные коэффициенты. Они определяются по таблице 11.2 [1] .

Кd - коэффициент влияния абсолютных размеров поперечного сечения по табл. 11.3 [1] .

КF - коэффициент влияния шероховатости таб.11.5 [1].

)D =+ КF −1 =3,95 +1,10 −1=4,05; (К )D = + КF −1 =2,8+1,10−1=2,9

д) Определяем пределы выносливости в расчётном сечении вала по формуле:

(-1 )D =; ( 1 )D =; где (-1 ) и  1 = 0.58-1 − пределы

выносливости гладких образцов при симметричном цикле изгиба и кручения.

(-1 )D = =37,2; ( 1 )D = =51,8;

е) Определяем коэффициенты запаса прочности по нормальным и касательным напряжениям:

S  ; S 

S  = 6,5 ; S 


ж) Определяем общий коэффициент запаса прочности в опасном сечении:

s = /[s];

где [s]= 1,3…1,5 высокая достоверность расчёта;[S]=1,6…2,1 менее точная достоверность расчёта.

s = = 6,3; S[S]; Проверочный расчёт на прочность дал удовлетворительные результаты.

17. Сборка редуктора.

Перед сборкой внутреннюю полость корпуса редуктора тщательно очищают и покрывают маслостойкой краской. Сборку производят в соответствии с чертежом общего вида редуктора, начиная с узлов валов:

− на быстроходный вал одевают мазеудерживающую шайбу, затем устанавливают внутренний подшипник, потом наружный, предварительно нагретые в масле до 80-100 С;

− в тихоходный вал закладывают шпонку, затем напрессовывают зубчатое колесо до упора в бурт вала;

− далее надевают распорную втулку и устанавливают подшипники, предварительно нагретые в масле.

Собранные валы укладывают в основание корпуса редуктора и надевают крышку корпуса, покрывая предварительно поверхности стыка крышки и корпуса спиртовым лаком. Для центровки устанавливают крышку на корпус с помощью двух конических штифтов; затягивают болты, крепящие крышку к корпусу. После этого на тихоходный вал надевают распорное кольцо, в подшипниковые камеры закладывают пластичную смазку, ставят крышки подшипников. Регулирующим болтом бугеля, регулируют зазор между шестерней и колесом, при этом проверяют проворачиванием валов отсутствие заклинивания подшипников (валы должны проворачиваться от руки) и закрепляют крышки винтами. Затем фиксируют стопорной шайбой и винтами.

Затем ввертывают пробку масло спускного отверстия с прокладкой и жезловый масло указатель. Заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой; закрепляют крышку болтами. Собранный редуктор обкатывают и подвергают испытанию на стенде по программе, устанавливаемой техническими условиями.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита04:05:48 04 ноября 2021
.
.04:05:47 04 ноября 2021
.
.04:05:45 04 ноября 2021
.
.04:05:44 04 ноября 2021
.
.04:05:42 04 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Реферат: Проектирование привода к конвейеру из конического редуктора и цепной передачи

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте