Министерство образования Республики Беларусь
Учреждение образования
"Гомельский государственный университет
им. Ф. Скорины"
Математический факультет
Курсовая работа
Элементарное изложение отдельных фрагментов теории подгрупповых функторов
Исполнитель:
Студентка группы М-42
Ларченко А.Ю.
Научный руководитель:
Канд. физ-мат. наук, доцент
Зверева Т.Е.
Гомель 2006
Содержание
Введение
Перечень условных обозначений
1. Общие определения и обозначения
2. Используемые результаты
3. Определения и основные примеры подгрупповых функторов
4. Решетки подгрупповых функторов
5. Классы групп с заданными решетками подгрупповых функторов
Заключение
Список использованных источников
Согласно теореме о соответствии между подгруппами основной группы, содержащие нормальную подгруппу и подгруппами из факторуппы существует взаимнооднозначное соответствие, при котором нормальным подгруппам соответствуют нормальные подгруппы, субнормальным подгруппам соответствуют субнормальные и т.д.
Этот факт лежит в основе следующего определения, введеного в монографии А.Н. Скибы "Алгебра формаций." (Мн.: Беларуская навука, 1997).
Пусть некоторый класс групп. Составим с каждой группой некоторую систему ее подгрупп . Будем говорить, что - подгрупповой -функтор
или подгрупповой функтор на
, если выполняются следующие условия:
1) для всех ;
2) для любого эпиморфизма , где А, и для любых групп и имеет место и
Значение этого понятия связано прежде всего с тем, что подгрупповой функтор выделяет в группе те системы подгрупп, которые инвариантны относительно гомоморфизма и поэтому удобны при проведении индуктивных рассуждений.
Целью данной дипломной работы является элементарное изложение отдельных фрагментов теории подгрупповых функтороф, доступное для понимания в рамках специальных курсов математических факультетов.
Дипломная работа состоит из введения, общей части, включающей 5 параграфов, заключения и списка используемой литературы.
В первом параграфе приводятся общие определения и обозначения.
Во втором параграфе даются те известные результаты теории групп, которые используются в основном тексте дипломной работы.
Третий параграф посвящен изучению основных понятий подгрупповых функторов и рассмотрению примеров. Здесь из различных источников собраны и систематизированы основные определения и примеры подгрупповых функторов.
В параграфе четыре систематизирован теоретический материал по теме "Решетки подгрупповых функторов".
Параграф пять изучает свойства конечных групп в зависимости от свойств соответствующих решеток подгрупповых функторов.
- принадлежность элемента множеству;
- знак включения множеств;
- знак строгого включения;
и - соответственно знаки пересечения и объединения множеств;
- пустое множество;
- множество всех простых чисел;
- некоторое множество простых чисел, т.е. ;
Пусть - группа. Тогда:
- порядок группы ;
- порядок элемента группы ;
- коммутант группы , т.е. подгруппа, порожденная коммутаторами всех элементов группы ;
- является подгруппой группы ;
- является собственной подгруппой группы ;
- является максимальной подгруппой группы ;
- является нормальной подгруппой группы ;
- является субнормальной подгруппой группы ;
- является минимальной нормальной подгруппой группы ;
- факторгруппа группы по подгруппе ;
- индекс подгруппы в группе ;
- нормализатор подгруппы в группе ;
Если и - подгруппы группы , то:
- и изоморфны.
Пусть - группа, и , тогда:
- правый смежный класс,
- левый смежный класс;
- совокупность всех нормальных подгрупп группы ;
- группа порядка ;
Скобки применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.
- подгруппа, порожденная элементами и .
- подгрупповой - функтор или подгрупповой функтор на , где - некоторый класс групп;
- совокупность всех - подгрупп группы ;
- тривиальный подгрупповой - функтор;
- единичный подгрупповой - функтор;
- ограничение подгруппового - функтора на класс групп ;
- пересечение системы подгрупповых - функторов ;
- решётка всех подгрупповых - функторов;
- решётка всех замкнутых подгрупповых - функторов;
Прописными готическими буквами обозначаются классы групп, т.е. всякое множество групп, содержащее вместе с каждой своей группой и все группы, ей изоморфные, в частности, формации, т.е. классы групп, замкнутые относительно факторгрупп и подпрямых произведений.
Стандартные обозначения, закрепленные за некоторыми классами групп:
- класс всех групп;
- класс всех абелевых групп;
Бинарной алгебраической операцией
на множестве называют отображение декартова квадрата во множество . Если - бинарная операция на , то каждой упорядоченной паре элементов из соответствует однозначно определенный элемент . Бинарную операцию на обозначают одним из символов: и т.д. Если, например, вместо условимся писать , то вместо пишем .
Говорят, что на множестве X определена
бинарная операция (умножение), если для всех .
Если для всех , то операция называется ассоциативной
.
Если для всех , то операция называется коммутативной
.
Элемент называется единичным
, если для всех .
Обратным
к элементу называется такой элемент , что .
Полугруппой
называется непустое множество с бинарной алгебраической операцией (умножение), удовлетворяющей следующим требованиям:
(1) операция определена на , т.е. для всех и ;
(2) операция ассоциативна, т.е. для любых .
Группой
называется непустое множество с бинарной алгебраической операцией (умножением), удовлетворяющей следующим требованиям:
(1) операция определена на , т.е. для всех и ;
(2) операция ассоциативна, т.е. для любых ;
(3) в существует единичный элемент, т.е. такой элемент , что для всех ;
(4) каждый элемент обладает обратным, т.е. для любого существует такой элемент , что .
Группу с коммутативной операцией называют коммутативной
или абелевой
.
Если - конечное множество, являющееся группой, то G называют конечной группой
, а число элементов в - порядком группы
.
Также группой
называется непустое множество с бинарной алгебраической операцией (умножением), удовлетворяющей следующим требованиям:
(1) операция определена на ;
(2) операция ассоциативна;
(3) уравнения , имеют решения для любых элементов .
Подмножество группы называется подгруппой
, если - группа относительно той же операции, которая определена на группе . Для подгруппы используется следующее обозначение: . Запись читается так: - подгруппа группы .
Также можно дать следующее определение подгруппы конечной группы. Непустое подмножество конечной группы называется подгруппой
, если для всех и
Собственной
называется подгруппа, отличная от группы.
Пусть - группа, и . Правым смежным классом
группы по подгруппе называется множество всех элементов группы вида , где пробегает все элементы подгруппы .
Аналогично определяется левый смежный класс
Если - конечная группа, то число различных правых смежных классов по подгруппе также будет конечно, оно называется индексом подгруппы
в группе и обозначается через .
Подгруппа называется нормальной подгруппой
группы , если для всех . Запись читается так: - нормальная подгруппа группы Равенство означает, что для любого элемента существует элемент такой, что .
Пусть - нормальная подгруппа группы . Обозначим через совокупность всех левых смежных классов группы по подгруппе , т.е. . Группа называется факторгруппой
группы по подгруппе и обозначается через .
Условимся через S
обозначать совокупность всех подгрупп группы , содержащих подгруппу . В частности, S
= S
- совокупность всех подгрупп группы , а S
.
Каждая нормальная подгруппа группы определяет цепочку . Обобщая эту ситуацию, цепочку
вложенных друг в друга нормальных подгрупп группы называют нормальным рядом
в .
Ряд называется субнормальным
, если выполняется более слабое условие: каждый предыдущий его член есть нормальная подгруппа следующего члена, т.е. для
Члены субнормальных рядов называются субнормальными подгруппами
(если подгруппа субнормальна в , то пишут ().
Ясно, что каждый нормальный ряд является субнормальным.
Собственная подгруппа неединичной группы называется максимальной подгруппой
, если не содержится ни в какой другой подгруппе, отличной от всей группы , т.е. если из условия следует, что или . Для максимальной подгруппы неединичной группы используется запись
В абелевой группе любые два элемента перестановочны. Если группа неабелева, то в ней существуют неперестановочные элементы, т.е. такие элементы и , что . Поэтому естественно рассмотреть элемент , для которого . Отсюда .
Коммутатором
элементов и называют элемент , который обозначают через . Ясно, что .
Подгруппа, порождённая коммутаторами всех элементов группы , называется коммутантом
группы и обозначается через . Таким образом, .
Для любой неединичной подгруппы можно построить цепочку коммутантов
Если существует номер такой, что , то группа называется разрешимой
.
Если - непустое подмножество группы и , то
Элемент называется перестановочным
с подмножеством , если . Равенство означает, что для любого элемента существует такой элемент , что . Если элемент перестановочен с подмножеством , то
Совокупность всех элементов группы , перестановочных с подмножеством называется нормализатором
подмножества в группе и обозначается через . Итак,
Пусть и - мультипликативные группы. Отображение называется гомоморфизмом
группы в группу , если для любых и .
Если - подмножество группы , то образ
при гомоморфизме , а - образ гомоморфизма
. Образ гомоморфизма также обозначают через .
Ядром
гомоморфизма называется множество где - единичный элемент группы . Другими словами, в ядре собраны все элементы группы , переходящие при отображении в единичный элемент группы .
Гомоморфизм называется мономорфизмом
, если . Из леммы 1 следует, что гомоморфизм является мономорфизмом тогда и только тогда, когда отображение - инъекция.
Если , то гомоморфизм называется эпиморфизмом
. Ясно, что в этом случае - сюръекция.
Гомоморфизм, который одновременно является мономорфизмом и эпиморфизмом, будет изоморфизмом.
Теорема 1.1
(Теорема о соответствии) Пусть - нормальная подгруппа группы . Тогда:
(
1) если - подгруппа группы и , то - подгруппа факторгруппы ;
(2) каждая подгруппа факторгруппы имеет вид , где - подгруппа группы и ;
(3) отображение является биекцией множества S
на множество S
;
(4) если S
, то - нормальная подгруппа группы тогда и только тогда, когда - нормальная подгруппа факторгруппы .
Лемма 1.2
Пусть - гомоморфизм группы в группу . Тогда:
(
1) единичный элемент группы переходит в единичный элемент группы , т.е. ;
(2) обратный элемент переходит в обратный, т.е. для всех ;
(3) образ гомоморфизма является подгруппой группы , т.е. ;
(4) ядро гомоморфизма является нормальной подгруппой группы , т.е. ;
(5) тогда и только тогда где когда .
Лемма 1.3
Пусть - гомоморфизм группы в группу . Тогда:
(
1) если , то ;
(2) если , то ;
(3) если подмножества и сопряжены в , то и сопряжены в .
Теорема 1.4
(Основная теорема о гомоморфизме) При гомоморфизме групп факторгруппа по ядру изоморфна образу, т.е. если - гомоморфизм, то .
Теорема 1.5
(первая о изоморфизме) Пусть - нормальная подгруппа группы . Тогда для любой подгруппы пересечение является нормальной подгруппой в подгруппе , а отображение
является изоморфизмом групп и .
Теорема 1.6
(вторая о изоморфизме) Если и - нормальные подгруппы группы , причем , то изоморфна .
Лемма 3.1
Пусть - формация, . Тогда
Лемма 20.6.
Пусть - подгрупповой функтор и - группа. Если и , тогда .
Лемма 20.7.
Пусть , - элементарно абелевы -группы с . Тогда имеет подгруппу такую, что .
Теорема.
Пусть - такой набор конгруэнций -алгебры A, что . Пусть
прямое произведение факторалгебр и
Тогда - мономорфизм алгебры в алгебру и входит подпрямо в .
Теорема 20.8.
Пусть - конечное многообразие локально конечных групп, причем каждая группа из либо счетна, либо конечна. Тогда в том и только в том случае решетка является цепью, когда существует такое простое число , что каждая группа в является элементарно абелевой -группой.
Теорема 20.9.
Пусть - конечная группа и - конечное многообразие, порожденное . Тогда в том и только в том случае является элементарной абелевой -группой, когда решетка является цепью.
Лемма 24.9
Пусть - наследственный гомоморф конечных групп. Пусть - замкнутый подгрупповой функтор на Пусть - нильпотентная группа в и Предположим, что , где - простое число. Пусть - нильпотентная группа в такая, что и Тогда
Лемма 24.10
Пусть - наследственный гомоморф конечных нильпотентных групп и Пусть Если - идемпотент в , удовлетворяющий условию и , где тогда
Теорема 24.11
Пусть - конечное многообразие групп. И пусть каждая группа в конечная. Тогда ширина решетки всех идемпотентов в конечна и в том и только в том случае, когда состоит из нильпотентных групп и
Пусть некоторый класс групп. Составим с каждой группой некоторую систему ее подгрупп . Будем говорить, что - подгрупповой -функтор
или подгрупповой функтор на
, если выполняются следующие условия: 1) для всех ;
2) для любого эпиморфизма , где А, и для любых групп и имеет место и
Подгрупповой -функтор называется:
1) замкнутым
, если для любых двух групп и имеет место ;
2) тривиальным
, если для любой группы имеет место
;
3) единичным
, если для любой группы система состоит из всех подгрупп группы G.
Тривиальный подгрупповой -функтор обозначается символом , а единичный - символом .
Если и - подгрупповой -функтор, то - такой подгрупповой -функтор, что для всех . Такой функтор называется ограничением функтора на классе .
Рассмотрим несколько примеров подгрупповых функторов. В случае, когда - класс всех групп, подгрупповые -функторы мы будем называть просто подгрупповыми функторами.
Пример 1.
Пусть для любой группы ,
Понятно, что - замкнутый подгрупповой функтор. Для обозначения такого подгруппового функтора мы применяем запись .
Пример 2.
Пусть - совокупность всех нормальных подгрупп группы для каждой группы . Такой функтор в общем случае замкнутым не является.
Пример 3.
Пусть - произвольное натуральное число. Для каждой группы через обозначим совокупность всех таких подгрупп , для которых . Понятно, что - подгрупповой -функтор. Для обозначения такого функтора мы будем применять запись .
Пример 4.
Пусть - произвольное кардинальное число. И пусть для любой группы .
Понятно, что такой подгрупповой функтор в общем случае не является замкнутым. Для обозначения такого функтора мы применяем запись .
Если - подгруппа группы , то символом обозначается мощность множества .
Пример 5.
Пусть - простое число и пусть для любой группы система в нет такой подгруппы , что , - натуральное число, взаимнопростое с
.
Покажем, что - подгрупповой функтор.
Действительно
, пусть и . Предположим, что
где - натуральное число. Тогда - натуральное число и
Следовательно, , и поэтому . Это означает, что . Аналогично, мы видим, что если
то . Таким образом, - подгрупповой функтор. Для обозначения такого подгруппового функтора мы используем запись . Заметим, что если - некоторый класс конечных групп и , то - замкнутый подгрупповой функтор.
Пример 6.
Пусть . И пусть для каждой группы множество совпадает с совокупностью всех тех подгрупп из , индексы которых не делятся на числа из . Понятно, что - замкнутый подгрупповой функтор. Для обозначения такого функтора мы будем применять запись .
Напомним, что подгруппа группы называется абнормальной
в , если всегда из следует, что .
Пример 7.
Пусть для любой группы множество совпадает с совокупностью всех абнормальных подгрупп группы . Легко видеть, что - незамкнутый подгрупповой функтор. Для обозначения такого функтора мы будем применять запись .
Пример 8.
Пусть - произвольный класс групп. Подгруппа группы называется - абнормальной в
, если выполняется одно из следующих двух условий:
1) ;
2) и для любых двух подгрупп и из , где и - максимальная подгруппа в имеет место .
Легко видеть, если группа разрешима, то ее подгруппа абнормальна в тогда и только тогда, когда она -абнормальна в .
Сопоставляя каждой группе множество всех ее -абнормальных подгрупп , получаем подгрупповой функтор, для которого мы будем применять запись .
Пример 9.
Подгруппа группы называется -субнормальной в , если выполняется одно из следующих двух условий:
1) ;
2) и в имеется такая цепь подгрупп где - максимальная в подгруппа, содержащая , .
Пусть - некоторая непустая формация и для каждой группы система состоит из всех -субнормальных в подгрупп.
Покажем, что - подгрупповой функтор. Пусть -субнормальна в . И пусть и - такие члены цепи (1), что , где - нормальная в подгруппа.
Покажем, что - максимальная подгруппа в . Допустим, что для некоторой подгруппы . Тогда поскольку максимальна в , то либо , либо .
Пусть имеет место первое. Тогда поскольку , то . Противоречие. Значит, , т.е. . Поэтому . Противоречие. Итак, ряд таков, что в нём для любого имеет место одно из двух условий:
1) ;
2) - максимальная подгруппа в . He теряя общности, мы можем считать, что все члены ряда (2) различны. Заметим, что поскольку то
Итак, - -субнормальная подгруппа в . Понятно также, что если - -субнормальная подгруппа в , то - -субнормальная подгруппа в . Таким образом, - подгрупповой функтор. Для обозначения такого функтора мы будем применять запись .
Класс групп называется гомоморфом, если он содержит все гомоморфные образы всех своих групп. Гомоморф конечных групп называется формацией
, если каждая конечная группа обладает наименьшей по включению нормальной подгруппой (обозначаемой символом ) со свойством .
Лемма 3.1
Пусть - формация, . Тогда
Доказательство. Пусть . Тогда
Отсюда следует, что . С другой стороны, поскольку - гомоморф, то
Откуда получаем . Из и следует равенство .
Лемма доказана.
Пример 10
. Пусть - некоторый класс конечных групп и - формация. Пусть для любой группы
Покажем, что - подгрупповой - функтор.
Действительно, пусть и . Тогда , и поэтому, согласно лемме 3.1, мы имеем
Следовательно, . Аналогично, если , то . Следовательно, - подгрупповой -функтор. Для обозначения такого функтора мы применяем запись .
Пример 11.
Для каждой группы через обозначим совокупность всех абнормальных максимальных подгрупп из . Понятно, что - подгрупповой функтор. Для обозначения такого функтора мы будем применять запись .
Аспект применения подгупповых функторов состоит в сопоставлении группе некоторой решетки подгупповых функторов свойства которой тесно связаны со свойствами самой группы. Это позволяет использовать строение группы в зависимости от условий налогаемых на соответствующую решетку подгупповых функторов.
Следует отметить также, что используя понятие подгуппового функтора можно строить новые типы решеток, что указывает на полезность этого понятия и для теории решеток.
Пусть - некоторый класс групп. Будем говорить, что - ограниченный класс, если найдется такое кардинальное число , что для всех имеет место . Везде в дальнейшем мы предполагаем, что - некоторый ограниченный класс групп.
Обозначим через, множество всех подгрупповых -функторов, а через - множество всех замкнутых подгрупповых -функторов. На множестве введем частичный порядок , полагая, что имеет место тогда и только тогда, когда для любой группы справедливо .
Для произвольной совокупности подгрупповых -функторов определим их пересечение для любой группы . Понятно, что - нижняя грань для в . Мы видим, что - полная решетка с нулем и единицей . Понятно, что функтор , где для всех , является верхней гранью для в .
Заметим, что если - произвольный набор замкнутых подгрупповых -функторов, то, очевидно, - замкнутый подгрупповой -функтор. А поскольку замкнутым является и функтор , мы видим, что также является полной решеткой.
Оказывается, что свойства таких решеток тесно связаны со свойствами групп, входящих в . Отметим, например, что если содержится в классе конечных групп, то решетка является цепью тогда и только тогда, когда для некоторого простого числа класс состоит из элементарно-абелевых -групп. С другой стороны, решетка является цепью тогда и только тогда, когда все группы из являются -группами. Покажем, что в общем случае не является подрешеткой в . Для этого достаточно установить, что если - класс всех конечных групп и ,, где и - различные простые числа, то функтор не является замкнутым. Пусть , где - группа порядка , a - группа порядка . Понятно, что и . Таким образом, если бы функтор был бы замкнутым, то мы бы имели Но, как нетрудно заметить, во множество входят лишь такие подгруппы из для которых имеет место одно из двух: или . Это означает, что . Следовательно, функтор не является замкнутым.
Сопоставляя классу конечных групп решетки и можно изучать свойства групп из в зависимости от свойств решеток и .
Лемма 20.6.
Пусть - подгрупповой функтор и - группа. Если и , тогда .
Доказательство. Если - канонический эпиморфизм на , то
Так как мы видим по определению подгрупповых функторов, что .
Лемма доказана.
Пусть - элемент группы . Тогда если для некоторого натурального числа имеет место , то наименьшее натуральное число с таким свойством называется порядком элемента
. Говорят, что - группа экспоненты , если каждый ее неединичный элемент имеет порядок .
Пусть - простое число. Тогда группа называется элементарно абелевой
-группой, если - абелева группа экспоненты .
Лемма 20.7.
Пусть , - элементарно абелевы -группы с . Тогда имеет подгруппу такую, что .
Доказательство. Нам необходимо рассмотреть лишь случай, когда - бесконечная группа.
Пусть и , где для всех и . Пусть - подмножество в такое, что . И пусть , где и . Тогда ясно, что
Следовательно, .
Лемма доказана.
Напомним, что класс групп называется наследственным
, если он содержит все подгруппы всех своих групп. Класс групп называется конечным многообразием
, если он наследственен, является гомоморфом и содержит прямое произведение (с конечным числом сомножителей) любых своих групп.
Пусть - простое число, делящее порядок группы . Подгруппа группы называется силовской -подгруппой в
, если и - степень числа . Известная в теории групп теорема Силова утверждает, что для любого простого числа в любой конечной группе с имеется силовская -подгруппа. Конечная группа называется -группой
, если ее порядок является степенью числа .
Обозначим через - класс всех конечных абелевых групп. Ввиду теоремы
Теорема.
Пусть - такой набор конгруэнций -алгебры A, что . Пусть
прямое произведение факторалгебр и
Тогда - мономорфизм алгебры в алгебру и входит подпрямо в ., класс является формацией. Обычно вместо пишут . Подгруппа называется коммутантом
группы . В теории групп хорошо известно, что если - конечная -группа, то . Легко проверить, что если , то
Теорема 20.8.
Пусть - конечное многообразие локально конечных групп, причем каждая группа из либо счетна, либо конечна. Тогда в том и только в том случае решетка является цепью, когда существует такое простое число , что каждая группа в является элементарно абелевой -группой.
Доказательство. Мы сначала предположим, что каждая группа в является элементарно абелевой -группой. Тогда для каждого кардинального числа , мы полагаем (см. пример 20.2). Понятно, что влечет, что . Для доказательства того, что является цепью нам необходимо только показать, что для любого подгруппового функтора со свойством найдется кардинальное число такое, что
Предположим, что для всех кардинальных чисел . Тогда . Поскольку , то найдется группа такая, что для некоторой ее подгруппы мы имеем . Пусть . Поскольку , найдется группа такая, что для некоторой ее подгруппы мы имеем . По лемме 20.6, мы видим, что для всех подгрупп из , удовлетворяющих условию , мы имеем . Следовательно, . Используя лемму 20.7, мы видим, что имеется подгруппа в группе такая, что
Но , и поэтому . Если - канонический эпиморфизм, который отображает на , то , и поэтому . Это противоречие показывает, что для некоторого кардинального числа имеем место .
Так как и так как каждая группа в - либо конечна, либо счетна, то найдется натуральное число такое, что . Пусть - наименьшее натуральное число такое, что . Мы покажем, что . Предположим, что и пусть - группа из такая, что . В этом случае пусть . Тогда . Теперь, по выбору числа , мы имеем . Это означает, что найдется группа такая, что для некоторой подгруппы из с . Пусть - подгруппа в такая, что и . Тогда . Так как , мы имеем , и поэтому . Но тогда , и поэтому , противоречие. Следовательно Значит, .
Теперь мы предположим, что решетка является цепью. Пусть и - конечная группа. Предположим, что порядок группы делится по крайней мере на два простых числа и . Пусть
И пусть - силовская -подгруппа в и - силовская -подгруппа в , соответственно. Тогда
Значит, и . Это показывает, что не является цепью, что противоречит нашему предположению. Следовательно, найдется такое простое число , что каждая конечная группа из является -группой.
Мы теперь покажем, что каждая группа в является абелевой. Предположим, что это не так и пусть - неабелева группа в . В этом случае некоторая ее подгруппа , порожденная элементами , является конечной неабелевой -группой. Так как по условию класс является наследственным, то . Пусть , где - класс всех абелевых групп. Поскольку , то , и поэтому . Следовательно, мы имеем . Теперь пусть где . И пусть - коммутант подгруппы , . Тогда и ясно, что . Значит, . Но поскольку , мы имеем . Таким образом, не является цепью. Полученное противоречие показывает, что каждая группа в является абелевой. Аналогично можно показать, что экспонента каждой группы из делит число .
Теорема доказана.
Пересечение всех конечных многообразий, содержащих данную группу , называется конечным многообразием, порожденным . Из теоремы 20.8 вытекает
Теорема 20.9.
Пусть - конечная группа и - конечное многообразие, порожденное . Тогда в том и только в том случае является элементарной абелевой -группой, когда решетка является цепью.
Пусть и - подгрупповые -функторы. Определим произведение при помощи следующего правила
Понятно, что подгрупповой -функтор является замкнутым тогда и только тогда, когда . Мы используем символ для обозначения произведения , в котором имеется сомножителей.
Пусть - произвольное непустое множество простых чисел. Подгруппа группы называется -холловской
, если ее индекс в не делится ни на одно число из , а среди простых делителей ее порядка нет ни одного не входящего в . Символом обозначают множество всех простых чисел, отличных от .
Конечная группа называется нильпотентной
, если выполняется одно из эквивалентных условий:
а) все силовские подгруппы нормальны в ;
б) все максимальные подгруппы (т.е. коатомы решетки ) нормальны в .
Лемма 24.9
Пусть - наследственный гомоморф конечных групп. Пусть - замкнутый подгрупповой функтор на Пусть - нильпотентная группа в и Предположим, что , где - простое число. Пусть - нильпотентная группа в такая, что и Тогда
Доказательство.
Пусть - холловская -подгруппа в и Предположим, что Тогда
и поэтому , где - силовская -подгруппа в . Тогда противоречие. Следовательно, и поэтому найдется максимальная подгруппа в така1я, что и . Так как - нильпотентная группа, то и поэтому согласно лемме 24.6, мы имеем Теперь мы докажем, что Если то по определению подгруппового функтора мы сразу имеем . Пусть и пусть - максимальная подгруппа в такая, что Тогда и так как
Так как мы видим, что и поэтому Следовательно, . Если где - максимальная подгруппа в то Но и поэтому мы видим, что Лемма доказана.
Лемма 24.10
Пусть - наследственный гомоморф конечных нильпотентных групп и Пусть Если - идемпотент в , удовлетворяющий условию и , где тогда
Доказательство.
Предположим, что Тогда найдется группа с Мы можем предполагать, что - группа минимального порядка с этим свойством. Следовательно, содержит подгруппу такую, что , но Ясно, что Пусть - максимальная подгруппа в такая, что и пусть Так как для каждого , мы имеем Понятно, что и поэтому Так как группа нильпотентна, то и поэтому по лемме 24.6, Так как мы видим, что для всех Следовательно, и поэтому по выбору группы , мы имеем Так как по условию то найдется такая группа , что для некоторой ее подгруппы мы имеем и Используя теперь лемму 24.9, мы видим, что и поэтому
Полученное противоречие показывает, что Но согласно нашему предположению, мы имеем Следовательно,
Пусть - решетка. Подмножество называется антицепью в если для любых различных элементов и из , мы имеем и Если - антицепь в такая, что для любой другой антицепи , тогда кардинальное число называется шириной решетки .
Если - произвольная совокупность групп, то символом обозначается множество всех простых делителей порядков групп из .
Теорема 24.11
Пусть - конечное многообразие групп. И пусть каждая группа в конечная. Тогда ширина решетки всех идемпотентов в конечна и в том и только в том случае, когда состоит из нильпотентных групп и
Доказательство.
Прежде мы предположим, что формация нильпотентна и , где Пусть Предположим, что имеется замкнытый функтор в такой, что и для Мы покажем, что Действительно, если , тогда найдется группа такая, что для некоторой подгруппы из , мы имеем Мы можем считать, что - группа минимального порядка с этим свойством. Понятно, что Пусть - такая максимальная подгруппа в , что . Согласно условию, класс является наследственным. Следовательно, , и поэтому ввиду выбора группы , мы имеем Пусть Так как то найдется группа такая, что Таким образом, для некоторой подгруппы мы имеем и поэтому по лемме 4.9, Это означает, что противоречие. Следовательно, Значит, если - замкнутый функтор в и то для некоторого мы имеем По лемме мы видим, что ширина решетки равна
Теперь мы предположим, что ширина решетки конечна и Пусть Если и тогда и и поэтому Это означает, что - конечное множество. Теперь мы покажем, что - класс нильпотентных групп. Предположим, что имеет ненильпотентную . Пусть и пусть - силовская -подгруппа в . Тогда Так как - ненильпотентная группа, то для некоторого имеет место . Хорошо известно (см., например, [], теорема), что не является субнормальной подгруппой в , и поэтому где (см. пример 21.4). С другой стороны, мы видим, что и поэтому Это показывает, что антицепь с противоречие. Таким образом, - формация, состоящая из нильпотентных групп. А по лемме 4.10, Теорема доказана.
Отметим, что теория подгрупповых функторов уже нашла много примениний при иследовании внутреннего строения конечных групп [1, 2, 3, 4]. Но еще один аспект применения подгупповых функторов состоит в сопоставлении группе некоторой решетки подгупповых функторов свойства которой тесно связаны со свойствами самой группы. Это позволяет использовать строение группы в зависимости от условий налогаемых на соответствующую решетку подгупповых функторов.
Следует отметить также, что используя понятие подгуппового функтора можно строить новые типы решеток, что указывает на полезность этого понятия и для теории решеток.
Скиба А.Н. Алгебра формаций. - Мн.: Беларуская навука, 1997.
Скиба А.Н. Решетки и универсальные алгебры. Учебное пособие. - Гомель: Гомельский гос. ун--т, 2002.255 с.
Селькин М.В. Максимальные подгруппы в теории классов конечных групп. - Мн.: Беларуская навука, 1997.
Каморников С.Ф., Селькин М.В. Подгрупповые функторы в теории классов конечных групп. - Гомель: Гомельский гос. ун--т, 2001.238 с.
Монахов В.С. Введение в теорию групп. Тексты лекций по курсу "Алгебра и теория чисел". - Минск: Белорусский гос. ун--т, 1990.72 с.
Холл М. Теория групп. - М.: ИЛ, 1962.468 с.
Шеметков Л.А., Скиба А.Н. Формации алгебраических систем. - М.: Наука, 1989.253 с.
|