Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Доклад: Естественно-научные концепции развития микроэлектронных и лазерных технологий

Название: Естественно-научные концепции развития микроэлектронных и лазерных технологий
Раздел: Рефераты по науке и технике
Тип: доклад Добавлен 09:33:49 03 ноября 2002 Похожие работы
Просмотров: 606 Комментариев: 20 Оценило: 6 человек Средний балл: 4.5 Оценка: 5     Скачать

Электроника - наука о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств (вакуумных, газоразрядных, полупроводниковых), используемых для передачи, обработки и хранения информации. Возникла она в начале ХХ века. На ее основе были созданы электровакуумные приборы.

С начала 50-х годов интенсивно развивается твердотельная электроника, прежде всего полупроводниковая. В начале 60-х годов возникла микроэлектроника - наиболее перспективное направление электроники, связанное с созданием приборов и устройств в микроминиатюрном исполнении и с использованием групповой технологии их изготовления. Возникновение микроэлектроники вызвано непрерывным усложнением функций и расширением областей применения электронной аппаратуры, что требовало уменьшения ее габаритов и массы, повышения быстродействия и надежности.

Основу электронной базы микроэлектроники составляют интегральные схемы, выполняющие заданные функции блоков и узлов электронной аппаратуры, в которых объединено большое число микроминиатюрных элементов и электрических соединений, изготовляемых в едином технологическом процессе. Микроэлектроника развивается в направлении уменьшения размеров содержащихся в интегральной схеме элементов (до 0,1-1,0 мкм), повышения степени интеграции, плотности упаковки, а также использования различных по принципу действия приборов (опто-, акусто-, криоэлектронных, магниторезисторных и др.) В последнее время ведутся интенсивные работы по созданию интегральных схем, размеры элементов которых определяются нанометрами, то есть постоянно набирает силу наноэлектроника - наиболее важное направление микроэлектроники, характеризующее современный этап развития естествознания.

Развитие твердотельной электроники.

Еще в ХIХ веке выдающийся физик Фарадей столкнулся с первой загадкой - с повышением температуры электропроводность исследуемого образца возрастала по экспоненциальному закону. К тому времени было известно, что электрическое сопротивление многих проводников линейно увеличивается с ростом температуры. Спустя некоторое время А.С.Беккерель обнаружил, что при освещении "плохого" проводника светом возникает электродвижущая сила - фотоЭДС - вторая загадка.

Кроме того было обнаружено изменение сопротивления селеновых стержней под действием света, что в определенной степени подтвердило сущность второй загадки, связанной с фотоэлектрическими свойствами "плохих" проводников.

В 1906 году физик К.Ф.Браун сделал важное открытие: переменный ток, проходя через контакт свинца и пирита, не подчиняется закону Ома; более того, свойства контакта определяются величиной и знаком приложенного напряжения. Это была 3-я физическая загадка.

В 1879 г. физик Холл открыл явление возникновения электрического поля в проводнике с током, помещенном в магнитное поле, направленное перпендикулярно току. Электрическое поле возникало и в полупроводниках. Предполагалось, что направление данного поля определяют электроны и какие-то положительно заряженные частицы. Открытие Э.Холла - четвертая загадка "плохих" проводников.

Созданная Максвеллом теория электромагнитного поля не объясняла ни одну из четырех загадок.

В 1922 г. был создан генерирующий детектор, способный усиливать и генерировать электромагнитные колебания. Основой его служила контактная пара: металлическое острие-полупроводник.

В полупроводниковой электронике 4 загадки оставались неразгаданными почти 100 лет.

Исследовательские работы существенно активизировались после создания зонной теории полупроводников. В верхней зоне - проходимости - находятся свободные заряды. Нижняя зона, в которой заряды связаны, валентная. Между ними - запрещенная зона. Если ее ширина велика, то в твердом теле электропроводность отсутствует и оно относится к диэлектрикам. Если не велика, то электроны могут возбуждаться и переходить из валентной зоны в более высокоэнергетическую. На освободившихся от электронов местах образуются дырки, которые эквивалентны носителям положительного заряда.

Выяснилось, что существуют полупроводники с электронным типом проводимости (п -тип), для кот. Эффект Холла отрицателен, и с положительным эффектом Холла, имеющие дырочный тип проводимости (р-тип). Первые наз. донорными, вторые - акцепторными.

В результате многих экспериментов удалось изготовить образец, включающий границу перехода между двумя типами проводимости. И удалось разгадать все 4 загадки "плохих" проводников.

Истоки современной микроэлектронной технологии.

К 1955 году была налажена технология изготовления транзисторов со сплавными и р-п -переходами. Потом появились разновидности сплавных транзисторов: дрейфовые и сплавные с диффузией.

В конце 50-х годов была разработана технология создания планарных транзисторов, конструкция которых имеет плоскую структуру. Особенность этой технологии - возможность создания множества приборов на одной подложке. Такая технология открыла путь к групповой технологии производства транзисторов и его автоматизации.

Развитие дискретной полупроводниковой техники, возможность автоматизации производства привели к интеграции. В 1960 году был предложен метод изготовления транзисторов в тонком эпитаксиальном слое, выращенном на монокристаллической подложке. Таким способом удавалось на прочной толстой подложке создать транзисторы с тонкой базой. Было предложено использовать транзисторы с тонкопленочными проводниками в пределах одной пластины. Такие транзисторы получили название интегральных, а кристаллы стали называть интегральными схемами.

Таким образом, наряду с дискретной твердотельной электроникой появилась интегральная электроника основанная на тонкопленочной групповой технологии.

Повышение степени интеграции и новые технологии.

Основная продукция микроэлектроники за последние десятилетия - разнообразные интегральные схемы. Возможно 3 пути роста интеграции.

Первый связан с уменьшением топологического размера и соостветственно повышением плотности упаковки элементов на кристалле. Второй - увеличение площади кристалла. Третий - оптимизация конструктивных приемов компоновки элементов.

Характерные размеры элементов интегральных схем становятся близкими к микрометру. Переход к еще меньшим размерам элементов требует нового подхода. Пришлось отказаться от ряда технологических операций. Фотографию заменили электронной, ионной и рентгеновской литографией.; диффузионные процессы заменили ионной имплантацией и т.д. Появилась молекулярно-инженерная технология, позволяющая строить приборы атом за атомом. Использование лучевых методов совместно с вакуумной технологией позволяет получить приборы с размерами до 10-25 нм.

Сфокусированные ионные потоки - инструмент, позволяющий создавать принципиально новые конструкции приборов. Рентгеновские установки позволяют реализовать тиражирование изображений с размерами микроэлементов, недоступных световой оптике.

С развитием микроэлектроники происходит усложнение схем и уменьшение размеров рисунка (ширина линий 0,5 мкм).

Сейчас основной материал полупроводниковых приборов - кремний. Переход к наноэлектронике заставляет обратиться и к другим материалам: арсениду галлия, фосфиду индия и т.д. Наноэлектроника позволяет создавать трехмерные - многослойные структуры. Развивается новое направление электроники - функциональная электроника. В первую очередь это оптоэлектроника.(размеры структур до 100 нм - доли длин световых волн).

Широким фронтом ведутся работы по использованию длинных молекул в качестве элементов микросхем.

Развитие лазерных технологий.

Для физиков лазер дал жизнь нелинейной оптике, охватывающей исследования распространения мощных световых пучков в твердых телах, жидкостях и газах и их взаимодействия с веществом.

Свойства лазерного излучения:

1.Лазерный луч распространяется, почти не расширяясь.

2.Свет лазера обладает исключительной монохроматичностью, то есть он имеет одну длину волны, один цвет.

3.Лазер - самый мощный источник света.

В 1960 г. Мейманом был создан первый лазер - рубиновый, работающий в импульсном режиме. В нем не вся энергия света лампы накачки преобразуется в лазерную вспышку, которая имеет огромную мощность.

Газовый лазер был создан почти одновременно с рубиновым, в 1960г. Он работал на смеси газа и неона. Разреженный газ в лазерной трубке очень мало рассеивает свет. Возбуждается газ электрическим разрядом, который проходит через всю толщу, не затухая. Поэтому размеры трубки могут быть внушительными. (5-10м).

Был создан газодинамический лазер, похожий на реактивный двигатель.

Не только газовые лазеры дают непрерывное излучение. Его дает и полупроводниковый лазер, вдохнувший жизнь в оптическую запись.

Широкое распространение получили лазеры на красителях. Их рабочая жидкость - раствор анилиновых красителей.

На пути использования лазерного луча встали трудности - как его передать. Возникла идея пустить луч по гибкой трубке с зеркальными стенками. Его можно пустить и по стеклянному стержню. Стеклянные волокна можно собирать в жгуты разной длины.

В последнее время успешно развивается волоконная оптика, изучающая процессы прохождения света и изображения по световодам и волноводам оптического диапазона. Свет начал применяться по настоящему только тогда, когда была разработана волоконно-оптическая - лазерная связь

Уникальная способность лазеров концентрировать световую энергию в пространстве, времени и спектральном интервале может быть использована при нерезонансном взаимодействии мощных световых потоков с веществом, при селекторном воздействии на атомы, ионы и молекулы. В этой связи возникли весьма перспективные быстро развивающиеся многоликие лазерные технологии, такие как лазерная обработка материалов, лазерный термоядерный синтез, лазерная химия, лазерное воздействие на живую ткань, лазерная спектроскопия, лазерная связь, лазер в офтальмологии, лазерная хирургия и голография.

При подготовке этой работы были использованы материалы с сайта http://www.studentu.ru

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита22:49:36 01 ноября 2021
.
.22:49:34 01 ноября 2021
.
.22:49:34 01 ноября 2021
.
.22:49:33 01 ноября 2021
.
.22:49:33 01 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Доклад: Естественно-научные концепции развития микроэлектронных и лазерных технологий

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте