|
Задача
1
| Дано:
,
,
.
Найти: , .
|

Рис. 1
|
Решение:
1. Решим задачу аналитически. Для этого рассмотрим равновесие шара 1. На него действует реакция N опорной поверхности А, перпендикулярная к этой поверхности; сила натяжения Т1
нити и вес Р1
шара 1 (рис. 2).

Рис. 2
Уравнения проекций всех сил, приложенных к шару 1, на оси координат имеют вид:
: (1)
: (2)
Из уравнения (1) находим силу натяжения Т1
нити:

Тогда из уравнения (2) определим реакцию N опорной поверхности:

Теперь рассмотрим равновесие шара 2. На него действуют только две силы: сила натяжения Т2
нити и вес Р2
этого шара (рис. 3).

Рис. 3
Поскольку в блоке Д трение отсутствует, получаем

2. Решим задачу графически. Строим силовой треугольник для шара 1. Сумма векторов сил, приложенных к телу, которое находится в равновесии, равна нулю, следовательно, треугольник, составленный из , и должен быть замкнут (рис. 4).

Рис. 4
Определим длины сторон силового треугольника по теореме синусов:



Тогда искомые силы равны:


Задача 2
| Дано:
,
,
,
,
.
Найти: , .
|

Рис. 5
|
Решение
1. Рассмотрим равновесие балки АВ. На неё действует равнодействующая Q распределённой на отрезке ЕК нагрузки интенсивности q, приложенная в середине этого отрезка; составляющие XA
и YA
реакции неподвижного шарнира А; реакция RС
стержня ВС, направленная вдоль этого стержня; нагрузка F, приложенная в точке К под углом ; пара сил с моментом М (рис. 6).

Рис. 6
2. Равнодействующая распределенной нагрузки равна:

3. Записываем уравнение моментов сил, приложенных к балке АВ, относительно точки А:
(3)
4. Уравнения проекций всех сил на оси координат имеют вид:
: , (4)
: , (5)
Из уравнения (3) находим реакцию RС
стержня ВС:

По уравнению (4) вычисляем составляющую XA
реакции неподвижного шарнира А:

С учетом этого, из уравнения (5) имеем:

Тогда реакция неподвижного шарнира А равна:

Задача 3
| Дано:
,
,
.
Найти: , , .
|

Рис. 7
|
Решение
Рассмотрим равновесие вала АВ. Силовая схема приведена на рис. 8.
Уравнения проекций сил на координатные оси имеют вид:
: , (6)
: , (7)

Рис. 8
Линии действия сил F1
, Fr
2
XA
и XB
параллельны оси х, а линия действия силы ZA
пересекает ось х, поэтому их моменты относительно этой оси равны нулю.
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
Аналогично линии действия сил Fr
1
, Fr
2
XA
, XB
, ZA
и ZB
пересекают ось у, поэтому их моменты относительно этой оси также равны нулю.
Относительно оси z расположены параллельно линии действия сил ZА
, ZB
Fr
1
и F2
, а пересекает ось z линия действия силы XA
, поэтому моменты этих сил относительно оси z равны нулю.
Записываем уравнения моментов всех сил системы относительно трёх осей:
: (8)
: (9)
: (10)
Из уравнения (4) получаем, что

Из уравнения (3) находим вертикальную составляющую реакции в точке В:

По уравнению (10), с учетом , рассчитываем горизонтальную составляющую реакции в точке В:

Из уравнения (6) определяем горизонтальную составляющую реакции в точке А:

Из уравнения (7) имеем

Тогда реакции опор вала в точках А и В соответственно равны:


Задача 4
| Дано:
,
,
,
,
.
|
| Найти: , , , .
|
Решение
1. Поскольку маховик вращается равноускоренно, то точки на ободе маховика вращаются по закону:
(11)
По условию задачи маховик в начальный момент находился в покое, следовательно, и уравнение (11) можно переписать как
(12)
2. Определяем угловую скорость вращения точек обода маховика в момент времени :

3. Находим угловое ускорение вращения маховика из уравнения (12):

4. Вычисляем угловую скорость вращения точек обода маховика в момент времени :

5. Тогда частота вращения маховика в момент времени равна:

6. По формуле Эйлера находим скорость точек обода маховика в момент времени :

7. Определяем нормальное ускорение точек обода маховика в момент времени :

8. Находим касательное ускорение точек обода маховика в момент времени :

Задача 5
Решение
1. Работа силы F определяется по формуле:
(13)
где – перемещение груза.
2. По условию задачи груз перемещается с постоянной скоростью, поэтому ускорение груза .

Рис. 10
3. Выбираем систему координат, направляя ось х вдоль линии движения груза. Записываем уравнения движения груза под действием сил (рис. 10):
: (14)
: (15)
где – сила трения скольжения.
Выражаем из уравнения (14) реакцию наклонной плоскости

и подставляем в уравнение (15), получаем

Тогда работа силы F равна


4. Мощность, развиваемая за время перемещения , определяется по формуле:
|