Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Генная инженерия её возможности и перспективы развития

Название: Генная инженерия её возможности и перспективы развития
Раздел: Рефераты по биологии
Тип: реферат Добавлен 03:47:11 09 июля 2011 Похожие работы
Просмотров: 772 Комментариев: 21 Оценило: 3 человек Средний балл: 4.3 Оценка: неизвестно     Скачать

Контрольная работа

по предмету:

«Концепции современного естествознания»

на тему:

«Генная инженерия: её возможности и перспективы развития»

Выполнил: студент 3 курса

заочного отделения

психологического факультета

Кулагин Александр

Проверил:

____________________________

Пенза 2010

Содержание

Введение ………………………………………………………… ……3

1.История появления генетики………………………………….......4

2. Наследственность по хромосомной теории…………………..6

3. Развитие генной инженерии……………………………………8

4. Химический синтез ДНК……………………………………….10

5.Успехи, возможности, и перспективы в генной инженерии….11

Заключение……………………………………………………………..12

Литература………………………………………………………………13

Введение

Генная инженерия - направление исследований в генетике и, молекулярной биологии конечной целью которых является получение с помощью лабораторных приемов организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств. В основе генной инженерии лежит обусловленная последними достижениями молекулярной биологии и генетики возможность целенаправленного манипулирования с фрагментами нуклеиновых кислот. К этим достижениям следует отнести: установление универсальности генетического кода, то есть факта, что у всех живых организмов включение одних и тех же аминокислот в белковую молекулу кодируются одними и теми же последовательностями нуклеотидов в цепи ДНК; успехи генетической энзимологии, предоставившей в распоряжение исследователя набор ферментов, позволяющих получить в изолированном виде отдельные гены или фрагменты нуклеиновой кислоты, осуществлять синтез фрагментов нуклеиновых кислот, объединить в единое целое полученные фрагменты. Таким образом, изменение наследственных свойств организма с помощью генной инженерии сводится к конструированию из различных фрагментов нового генетического материала, введение этого материала в рецепиентный организм, создания условий для его функционирования и стабильного наследования. Долгое время вопрос о природе наследственности находился в ведении эмбриологии, в которой вплоть до XVII в. господствовали фантастические и полуфантастические представления. Во второй половине XVIII в. учение о наследственности обогащается новыми данными искусственной гибридизацией и опылением растений, установлением пола у растений, а также отработкой методики гибридизации. Одним из основоположников этого направления является И.Г. Кельрейтер, он тщательно изучал процессы оплодотворения и гибридизации. Открыл

явление гетерозиса — более мощного развития гибридов первого поколения,

3

которое не мог правильно объяснить. Опыты по искусственной гибридизации растений позволили опровергнуть концепцию преформизма.

История появления генетики

В самом начале XIX в. считалось, что наследственные признаки гибрида являются результатом взаимодействия материнских и отцовских компонентов, их борьбы между собой, и исход этой борьбы определяется количественным участием, долей этих компонентов. В первой половине XIX в. появились первые предпосылки учения о наследственности и изменчивости — генетики. Идея единства растительного и животного миров должна была получить научное выражение в форме теории, которая базируется на том, что инвариантные характеристики органического мира должны иметь свое морфологическое выражение, проявляться в определенной структурной гомологии организмов. Второе событие выделение явлений наследственности как специфической черты живого, которую не следует растворять в множестве свойств индивидуального развития организма. Такой подход сформулирован у О. Сажрэ и в полной мере получил свое развитие в творчестве Г.Менделя. Разработка клеточной теории было важнейшим шагом на пути научных воззрений на наследственность и изменчивость. Основной философской идеей, которая привела к открытию клетки, была идея единства растительного и животного миров. Еще в XVII в., она разворачивалась с трудов Р. Декарта, Г.ВЛейбница, а позже — французских материалистов XVIII в., особенно Д.Дидро, Ж. Ламетри и др. Ориентировочно для биологических исследований она была сформулирована К.Ф. Вольфом, Л. Океном, Ж.Бюффоном, И.В. Гете, Э. Жоффруа Сент-Илером и др. Следующий шаг на этом пути состоял в том, чтобы от общей идеи единства органического

4

мира прийти к выводу, что такое единство должно иметь свое морфологическое выражение, проявляться в определенной структурной гомологии организмов. Именно в этом направлении работали многие ученые (П.Ж. Тюрпен, Я.Пуркине, Г. Валентина, А. Дютроше и др.), но только Т.Шванну удалось окончательно прояснить данный вопрос. Трудность состояла в том, что растительные и животные клетки, с одной стороны, а также клетки разных тканей животных — с другой, выглядят мало похожими друг на друга. Сходным и легко различимым элементом всех клеток является ядро. Мысль об этом сформулировал М. Шлейден. Опираясь на нее, Т. Шванн разработал основные положения своей клеточной теории. В основе ее лежало утверждение, что клеткообразование — универсальный принцип развития организма . Клетка была выделена как универсальная инвариантная единица строения организма. Из основ клеточной теории стало ясно, что процесс клеткообразования регулируется каким-то единым, универсальным механизмом, за которым скрывается загадка наследственности и изменчивости. Другими словами, создание клеточной теории позволяло “выйти” на объект генетики. Важную роль в истории учения о наследственности занимает творчество О. Сажрэ. Он первый в истории учения о наследственности начал исследовать не все, а лишь отдельные признаки скрещивающихся при гибридизации растений. С работ Сажрэ начинается собственно научная генетика. Он первым понял корпускулярный, дискретный характер наследственности и выделил наследственность как специфический объект познания, отличный от процесса индивидуального развития организма, разграничил предмет генетики от предмета эмбриологии и онтогенетики. Вторая половина XIX в. - период создания важнейших отраслей: биологической науки — эмбриологии (К. Бэр); цитологии (М.Шлейден, Т. Шванн, Р.Вирхов, Г. Моль); физиологии (Г. Гельмгольц, Э. Дюбуа-Реймон, К. Бернар); основы органической химии (Ф. Велер,

5

Ю. Либих, М. Бертло); получены результаты в области гибридизации и явлений наследственности (Ш. Нодэн, Г. Мендель). Среди важнейших открытий данного периода можно указать следующие: описание митотического деления клеток и особенностей поведения хромосом (И.Д. Чистяков, Э. Страсбурге); установление того, что первичное ядро зародышевой клетки возникает путем слияния ядер сперматозоидов и яйцеклетки (О. Гертвиг, Г. Фоль); открытие продольного разделения хромосом и его закономерностей — образование веретена, расхождение хромосом к полюсам ( В. Флемминг); установление закона постоянства числа хромосом для каждого вида (Т.Бовери, Э. Страсбурге); установление того, что в половых клетках содержится половинный набор хромосом по сравнению с соматическими клетками (Э.ван Бенеден); описание процесса майоза и объяснение механизма редукции числа хромосом (В. И. Беляев, О. Гертвиг). Важнейшим событием в генетике XIX в. было формулирование Г.Менделем его знаменитых законов. Из работ Сажрэ, Мендель рассматривал не наследуемость всех признаков организма сразу, а выделял наследуемость единичных, отдельных признаков, абстрагируя эти признаки от остальных, удачно применяя при этом вариационно-статистический метод, демонстрируя эвристическую мощь математического моделирования в биологии. Открытие Менделем закономерностей расщепления признаков показало, что возникающие у организмов рецессивные мутации не исчезают, а сохраняются в популяциях в гетерозиготном состоянии.

Наследственность по хромосомной теории

Важнейшим событием в XX в явилось появление экспериментальной генетики и новое открытие законов Менделя. В 1900 г. законы Менделя были

6

открыты по новому независимо сразу тремя учеными — Г. де Фризом в Голландии, К. Корренсом в Германии, Э.Чермаком в Австрии. За относительно короткий срок в учении о наследственности был накоплен большой эмпирический и теоретический материал. К открытиям пришедшим в этот период можно отнести: открытие дискретного характера наследственности; обоснование представления о гене и хромосомах как носителях генов; представление о линейном расположении генов; доказательство существования мутаций и возможность вызывать их искусственно; установление принципа чистоты гамет, законов доминирования, расщепления и сцепления признаков; разработка методов гибридологического анализа, чистых линий и инцухта, кроссинговера (нарушение сцепления генов в результате обмена участками между хромосомами) и др. Важно, что все эти и другие открытия были экспериментально подтверждены, и строго обоснованы. В первой четверти XXв. интенсивно развивались и теоретические аспекты генетики. Особую роль сыграла хромосомная теория наследственности, разработанная в 1910, 1915 гг. в трудах А. Вейсмана, Т. Моргана, А.Стертеванта, Г.Дж. Меллера и др. Она строилась на следующих исходных абстракциях: хромосома состоит из генов; гены расположены на хромосоме в линейном порядке; ген — неделимая корпускула наследственности, “квант”; в мутациях ген изменяется как целое. Первое время среди представителей различных концепций наследственности было очень много споров. Преодоление противоречий между генетикой и эволюционной теорией стало возможным с созданием синтетической теории эволюции, которая выступает основанием всей системы современной эволюционной биологии. Синтез генетики и эволюционного учения был качественным скачком в развитии как генетики, так и эволюционной теории. Принципиальные положения синтетической теории эволюции были заложены работами С. С. Четверикова, а также

7

Р.Фишера, С. Райта, Дж. Холдейна, Н.П. Дубинина и др. Непосредственными предпосылками для синтеза генетики и теории эволюции выступали: хромосомная теория наследственности, биометрические и математические подходы к анализу эволюции. В основе этой теории лежит представление о том, что элементарной “клеточкой” эволюции является не организм и не вид, а популяция. Наследственное изменение популяции в каком-либо определенном направлении осуществляется под воздействием ряда эволюционных факторов (изменяющих генотипический состав популяции): мутационный процесс (поставляющий элементарный эволюционный материал), популяционные волны (колебания численности популяции в ту или иную сторону от средней численности входящих в нее особей), изоляция (закрепляющая различия в наборе генотипов и способствующая делению исходной популяции на несколько самостоятельных), естественный отбор (процесс, определяющий вероятность достижения индивидами репродукционного возраста). Популяция — та реальная целостная система взаимосвязи организмов, которая обладает всеми условиями для саморазвития, способностью наследственного изменения в смене биологических поколений. Элементарной единицей наследственности выступает ген (участок молекулы дезоксирибонуклеиновой кислоты — ДНК, отвечающий за развитие определенных признаков организма). Естественный отбор является ведущим эволюционным фактором, направляющим эволюционный процесс. Формирование синтетической теории эволюции ознаменовало переход к популяционной концепции, сменившей организмоцентрическую. Это открыло качественно новый этап в развитии биологии — переход к созданию единой системы биологического знания, воспроизводящей законы развития и функционирования органического мира как целого.

8

Развитие генной инженерии

Как раздел молекулярной биологии генная инженерия возникла в 1970-е гг. Её задачи были связанны созданием различных комбинаций генетического материала, способного размножаться (в клетке) и синтезировать конечные продукты. В создании этих комбинаций играют особые ферменты (рестриктазы, ДНК-лигазы). Рассекая молекулу ДНК на фрагменты в строго определенных местах, они соединяют эти фрагменты ДНК в единое целое. Создание искусственных гибридных генетических структур рекомбинантных ДНК стало возможным после выделения таких ферментов. Такая молекула ДНК содержит искусственный гибридный ген (или набор генов) и «вектор-фрагмент» ДНК, обеспечивающий размножение рекомбинированной ДНК и синтез ее конечных продуктов — белков. Все это уже происходит в клетке-хозяине (бактериальной клетке), куда вводится рекомбинированная ДНК. Методами генной инженерии сначала были получены трансгенные микроорганизмы, несущие гены бактерии и гены онко-генного вируса обезьяны, а затем — микроорганизмы, несущие в себе гены мушки дрозофилы, кролика, человека и т.д. Впоследствии удалось осуществить микробный (и недорогой) синтез многих биологически активных веществ, присутствующих в тканях растений и животных в низких концентрациях: интерферона и гормона роста человека, инсулина, вакцины против гепатита, а также клеточных гибридов, синтезирующих антитела желаемой специфичности, ферментов гормональных препаратов, и т.п. Трансгенная биотехнология, занимается конструированием и применением трансгенных организмов. В неразрывной связи с генной инженерией развиваются фундаментальные исследования в молекулярной биологии. Направлениями молекулярной биологии и генной инженерии является изучение геномов растительных и животных видов и разработка способов их реконструкции. В отличие от генотипа геном представляет собой

9

характеристику вида, а не отдельной особи. Геном — это совокупность генов, характерных для гаплоидного, т.е. одинарного набора хромосом данного вида организмов. Исследования ведет молекулярную биологию от выяснения способов воссоздания генома вида к разработке способов воссоздания генотипа особи. Известно что геном человека состоит из 3 млрд нуклеотидов, из них30 млн (около 10% всей хромосомной ДНК) объединены

в 40 тысяч генов. Можно предложить что геном человека — это созданный природой грандиозный текст, состоящий из 3 млрд букв, под которыми подразумеваются молекулы-нуклеотиды — аденин, гуанин, цитозин и тимин. В 2003 г. были выявлены последовательности нуклеотидов в 40 тыс. генов человека. В чём функции остальных 90% нуклеотидов ДНК не вполне понятны, и сейчас они исследуются. Замечено что разница на уровне ДНК между двумя людьми составляет в среднем один нуклеотид на тысячу, наследственные индивидуальные особенности каждого человека они и обусловливают.

Химический синтез ДНК

Информацию, записанную в молекуле ДНК, можно прочитать, разрывая и вновь создавая относительно слабые водородные связи, совсем не затрагивая более прочные связи «сахар-фосфат» в цепочке-матрице. В полимерных молекулах ДНК природа кодирует информацию, необходимую для создания живого организма. Цепочка из повторяющихся сложноэфирных фосфатных связей между сахарами образует жесткий скелет ДНК, на котором информация записывается с помощью особого алфавита из четырех «букв» генетического кода: аденина, тимина, цитозина и гуанина (А, Т, С, G). Последовательность таких «букв» кодирует информацию. Каждая «буква» содержит несколько атомов азота, ковалентно связанных с фрагментами

10

cахаров. Двойная спираль ДНК включает водородные связи. Первый химический синтез гена, потребовал многолетней напряженной работы. В промышленных лабораториях уже синтезированы гены инсулина и интерферона. Произведен синтез гена для фермента рибонуклеозы, открывающей возможность изменять желаемым образом физические и химические свойства белка.

Успехи, возможности, и перспективы в генной инженерии

Генная инженерия открыла перспективы конструирования новых биологических организмов — трансгенных растений и животных с заранее запланированными свойствами. Cамыми современными методами получаются фрагменты генов длиной в сотни пар оснований, а для дальнейших исследований нужны фрагменты в 100 и более. Молекулярная биология позволяет вводить почти любой отрезок ДНК в микроорганизм, чтобы заставить его синтезировать тот белок, который кодирует данная ДНК. А современная органическая химия синтезирует последовательности нуклеотидов – фрагменты генов. Эти фрагменты можно применять для изменения исходной последовательности оснований в гене, кодирующем нужный белок. Например, можно получить модифицированный белок с измененной последовательностью аминокислот, т. е. белок со структурой и функцией, ранее не существовавшими в природе. Такой метод осуществления специфических мутаций в нормальных белках получил название мутагенеза. Он позволяет получить белки любой структуры. Кроме того, один раз синтезированная молекула гена, кодирующего белок, с помощью микроорганизмов может воспроизвести белок в любых количествах. Огромное значение имеет изучение генома человека. Один из самых трудоемких и дорогостоящих в истории науки международных

11

проектов «Геном человека». В рамках этого проекта была поставлена задача выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и локализовать их, т.е. полностью картировать все гены человека. Ожидается, что затем исследователи определят все функции генов и разработают технологические способы использования этих данных. В ходе выполнения проекта «Геном человека» разработано много новых методов исследования, большинство из которых в последнее время используется. Это значительно ускоряет и удешевляет расшифровку ДНК, что является важнейшим условием для их широкого использования в медицинской практике, фармакологии, криминалистике и т.д. Среди этих методов есть и такие, которые позволяют расшифровывать генотип отдельного человека и создавать генные портреты людей. По последовательностям ДНК можно устанавливать степень родства людей. Разработан метод «генетической дактилоскопии», который с успехом применяется в криминалистике. Сходные подходы можно использовать в антропологии, палеонтологии, этнографии, археологии. Это дает возможность эффективнее лечить болезни, оценивать способности и возможности человека, выявлять различие между популяциями, оценивать степень приспособленности человека к той или иной экологической обстановке.

Заключение

К настоящему времени известно около 10 тыс. различных заболеваний человека, из которых более 3 тыс. — наследственные. Выявлены мутации, отвечающие за такие заболевания, как гипертония, диабет, некоторые виды слепоты и глухоты, злокачественные опухоли; обнаружены гены,

12

ответственные за одну из форм эпилепсии, гигантизм и др. С недавних пор остро обсуждается вопрос о конфиденциальности генетической информации о конкретных людях. В некоторых странах приняты законы, ограничивающие распространение такой информации. В настоящее время для медицинских целей разрабатываются технологии, позволяющие за одну неделю получить «генетическую карту» человека и записать ее на компакт-диск. Вместе с тем, как говорят специалисты, изучение генома человека прояснило гораздо меньше загадок, чем ожидалось. Удалось только «поставить указатели» для дальнейших исследований. Прочтение генома — это первый этап в понимании его функционирования. Задача следующего — разобраться в том, каковы функции генов, как и какие белки они синтезируют, как функционируют гены по отдельности и как они взаимодействуют между собой; иначе говоря, как работают вместе 3 млрд нуклеотидов. Это, пожалуй, главная проблема биологии XXI в.

Литература

1.Найдыш В.М. Концепции современного естествознания: Учебник. — Изд. 2-е, – М.: 2004. — 622 с.

2.Карпенков С.Х. Концепции современного естествознания: Учебник для вузов. – М.: Академический Проект, 2000. – 639 с.

3.Самыгин С.И. Концепции современного естествознания: Ростов н / Д.: Феникс, 2005. – 413с.

4.Садохин А. П. Концепция современного естествознания. – М.: Омега, 2006.

5.Торосян В.Г. Концепция современного естествознания: Учебное пособие. – М.: Высшая школа, 2003.

13

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита11:12:05 03 ноября 2021
.
.11:12:02 03 ноября 2021
.
.11:12:01 03 ноября 2021
.
.11:12:00 03 ноября 2021
.
.11:11:58 03 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Реферат: Генная инженерия её возможности и перспективы развития

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте