Министерство высшего и профессионального образования
Российской Федерации
Иркутский Государственный Технический Университет
Курсовая работа
По электротехнике и электронике
Анализ сложных электрических цепей постоянного тока и однофазного переменного тока
Выполнил:
Проверила:
Василевич М.Р.
Иркутск 2006г
Содержание:
1. Анализ электрических цепей постоянного тока
Расчёт токов с помощью законов Кирхгофа
Расчёт токов методом контурных токов
Расчёт токов методом узлового напряжения
Исходная таблица расчётов токов
Потенциальная диаграмма для контура с двумя Э.Д.С
Баланс мощности
Определение показания вольтметра
2. Анализ электрических цепей переменного тока
Расчёт токов с помощью законов Кирхгофа
Расчёт токов методом контурных токов
Расчёт токов методом узлового напряжения
Исходная таблица расчётов токов
Векторная диаграмма токов и топографическая диаграмма напряжений на комплексной плоскости
Определение показания вольтметра
1. Анализ электрических цепей постоянного тока

=9 Ом
=7,5 Ом
=12 Ом
=22,5 Ом
=315 Ом
=10,5 Ом
=0
=12 Ом
=-
=15 В
=33 В
=-
=2 В
=0 В
В предложенной электрической цепи заменяем источники тока на источники ЭДС.
2)Выбираем условно положительное направление токов.
3)Выбираем направление обхода независимых контуров.
Находим эквиваленты:
= * / ( + ) = 21
= + =0+12=12 Ом
= + =15+2=17
= + =33+0=33
1.1 Расчёт токов с помощью законов Кирхгофа
Записываем систему уравнений для расчета электрических цепей с помощью законов Кирхгофа. По 1 закону составляем (у-1) уравнение, где у количество узлов. По 2 закону Кирхгофа составляем [b-(y-1)] уравнение, где b – количество ветвей.
a) + + =0
b) - + =0
c)- - - =0
I)  - + =
II)  - - =-
III)-  +  - =-
Рассчитываем систему уравнений с помощью ЭВМ, векторы решения находятся в приложении 1. 
 
(Данные расчета находятся в приложении 1)
После расчета на ЭВМ записываем:
=1.29 A =-0.80 A
=0.77 A =-0.52 A
=1.32 A =0.03 A
1.2 Расчёт токов методом контурных токов
Находим действующие в цепи токи с помощью метода контурных токов. Предполагается, что каждый контурный ток имеет свое собственное контурное сопротивление, которое равно арифметической сумме всех сопротивлений входящих в контур. Контурное ЭДС равно сумме всех ЭДС входящих в контур.
В каждом независимом контуре рассматривают независимые и граничащие ветви. В каждой граничащей ветви находят общее сопротивление, которое равно сопротивлению этой ветви. Составляют систему уравнений, количество которых равно количеству контурных токов. В результате расчета находят контурные токи и переходят к действующим.
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
1) Предположим, что в каждом независимом контуре течет свой контурный ток , , . Выберем произвольно положительное направление обхода токов в одно направление.
2)Находим полно контурное сопротивление всех контурных токов.
= + + =7,5+10,5+21=39 Ом
= + + =21+12+12=45 Ом
= + + =9+7,5+12=28,5 Ом
Находим общее сопротивление
= =
= =
= =
Находим полные контурные ЭДС
=
=
=-
Составляем систему уравнений для нахождения контурных токов
Согласно второму закону Кирхгофа
 - - =
- + - =
- - + =


(Данные расчета находятся в приложении 2)
После расчета на ЭВМ записываем:
=-0.52455258749889799877 (А)
=-1.3224896411883981310 (А)
=-1.2913691263334214934 (А)
4.Ток в независимой цепи равен контурному току с учетом знаков, а ток в зависимой цепи равен алгебраической сумме.
=-I33=1.29 A
=I11-I33=-0.52455258749889799877-(-1.2913691263334214934) =0,77 A
=-I22=1.32 A
=I22-I11=-1.3224896411883981310-(-0.52455258749889799877) -0,8 A
=I11=-0.52 A
=I33-I22=-1.2913691263334214934-(-1.3224896411883981310) =0,03 A
В результате токи равны:
=1.29 A
=0,77 A
=1.32 A
= -0,8 A
= -0.52 A
= 0,03 A
1.3 Расчёт токов методом узлового напряжения
Проверяем правильность нахождения токов в заданной электрической цепи методом узловых потенциалов. Согласно этому методу предполагается, что в каждом узле схемы имеется свой узловой ток который равен алгебраической сумме всех токов за счет проводимости ветвей. Этот метод основан на первом законе Кирхгофа и законе Ома.
Заземляем узел 3, φ
3=0
Если в электрической схеме заземляется один из узлов, потенциал этой точки равен 0, а тока распределение не меняется.
Находим собственные проводимости ветвей присоединенных к оставшимся узлам 1,2,4. Собственная проводимость ветвей равна арифметической сумме проводимостей ветвей присоединенных к соответствующим узлам.
 
 
 
Находим взаимные проводимости, которые равны проводимости общих ветвей между соседними узлами.

Находим полный узловой ток, который равен сумме произведений ЭДС на соответствующую проводимость.

Составляем уравнение в соответствии с первым законом Кирхгофа.



(Данные расчета находятся в приложении 3)
После расчета на ЭВМ записываем:
=16,756645482734525139 
-0,37345273475483642976

11,248845822938816704 
1. По закону Ома находим искомые токи.
Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:
— Разгрузит мастера, специалиста или компанию;
— Позволит гибко управлять расписанием и загрузкой;
— Разошлет оповещения о новых услугах или акциях;
— Позволит принять оплату на карту/кошелек/счет;
— Позволит записываться на групповые и персональные посещения;
— Поможет получить от клиента отзывы о визите к вам;
— Включает в себя сервис чаевых.
Для новых пользователей первый месяц бесплатно.
Зарегистрироваться в сервисе
=( - )/ =(11,248845822938816704-( -0,37345273475483642976))/9=1,291367 A
=( - + )/ =((0,083333-11,248845822938816704)+17)/7,5=0,777932 A
=( - + )/ =(0-,37345273475483642976-16,756645482734525139+33)/12= 1,322492 A
=( - )/ =(0,083333-16,756645482734525139)/21=-0,79397 A
=( - )/ =(11,248845822938816704-16,756645482734525139)/10,5=-0,52455 A
=( - )/ =(0,083333-( -0,37345273475483642976))/12=0,038065 A
Округляем искомые токи до сотых долей:
=1,29 A
=0,78 A
=1,32 A
=-0,79 A
=-0,52 A
=0,04 A
1.4
Исходная таблица расчётов токов
V Составляем исходную таблицу расчетов токов всеми методами
I токи
Метод
|
I1,A
|
I2,A
|
I3,A
|
I4,A
|
I5,A
|
I6,A
|
Закон Кирхгофа
|
1,29
|
0,77
|
1,32
|
-0,8
|
-0,52
|
0,03
|
Контурных Токов
|
1,29
|
0,77
|
1,32
|
-0,8
|
-0,52
|
0,03
|
Узловых Потенциалов
|
1,29
|
0,78
|
1,32
|
-0,79
|
-0,52
|
0,04
|
1.5 Потенциальная диаграмма для контура с двумя Э.Д.С
VI Строим потенциальную диаграмму

∑R= =42 Ом
1.6
Определение показания вольтметра

VII Находим показания вольтметра по второму закону Кирхгофа

pV= -17+33+0,77*7.5+(-0,52)*10.5-1,32*12=
=0.475 В
1.7
Баланс мощности
XIII Составляем баланс мощности


56.62Вт=56.65Вт
2. Анализ электрических цепей переменного тока
1) Начертим электрическую цепь без ваттметра и записать данные.

=40.5 мГн
=0 мГн
=35.4 мкФ
=53 мкФ
=25 Ом
f=150 Гц
=70.5 cos(ωt+275)
’=68.5 cos(ωt-174)
’=56 sin(ωt-170)
2)Найдем сопротивление элементов входящих в цепь.
 Ом
 Ом
 Ом
 Ом
3)
Находим комплексы ЭДС, входящие в цепь.
Ė= Ė’+ Ė’’



70.5 В
68.5 В
=56 В


2.1 Расчёт токов с помощью законов Кирхгофа
4)Производим расчет предложенной схемы методом законов Кирхгофа.
Выбираем условно положительное направление токов. Рассчитываем искомые токи.

Записываем систему уравнений для мгновенных значений токов и напряжений в соответствии с первым и вторым законами Кирхгофа в интегро-дифференциальной форме, причем по первому закону Кирхгофа составляем (у-1) –уравнений, а по второму закону Кирхгофа –[b-(y-1)]-уравнений.
(у-1)=1
[b-(y-1)]=2

Или в комплексной форме:




Решаем данную систему уравнений с помощью ЭВМ.
(Данные расчета находятся в приложении 4)
После расчета на ЭВМ записываем значения комплексных токов:
[A]
[A]
= =4.69 [A]
Находим действующие значения токов:
 =6.37 [A]
 =2.2 [A]
 =4.69 [A]
2.2 Расчёт токов методом контурных токов
5. Производим расчет данной схемы методом контурных токов.
Находим полные контурные сопротивления:
j(38.15-29.99)+25=25+8.16j [Ом]
j(0-20.03)+25=25-20.03j [Ом]
Находим взаимное сопротивление:
  =25 [Ом]
Находим комплексы полных контурных ЭДС:

Записываем систему уравнений:

Решаем систему уравнений с помощью ЭВМ.
(Данные расчета находятся в приложении 5)
После расчета на ЭВМ Записываем значения контурных токов:
=3.08+5.57j [A]
=1.04+4.75j [A]
Причем контурный ток равен току в независимой ветви, т.е. току . Контурный ток равен току в независимой ветви, но направлен навстречу. Искомый ток = - .
Таким образом:
=3.08+5.57j [A]
=0.24+0.82j [A]
=-1.04-4.75j [A]
2.3Расчёт токов методом узлового напряжения
6) Проверяем правильность нахождения расчета методом узловых потенциалов.
Для этого узел 2 заземляем, а для остальных составляем систему уравнений.
φ2=0
Находим полную комплексную проводимость узла.
= 0.04-0.07j 
(Данные расчета находятся в приложении 6)
Находим комплекс узлового тока.
=
= 
(Данные расчета находятся в приложении 7)
Находим комплексный потенциал:

В результате решения этого уравнения находим комплекс потенциала
и по закону Ома находим искомые токи.

(Данные расчета находятся в приложении 8)
По закону Ома находим искомые токи:
= [A]
(Данные расчета находятся в приложении 9)
= [A]
(Данные расчета находятся в приложении 10)
= [A]
(Данные расчета находятся в приложении 11)
2.4 Исходная таблица расчётов токов
7)Составляем сводную таблицу искомых токов:
токи
Метод
|
,A
|
,A
|
,A
|
Законы Кирхгофа
|
3,08+5,57j
|
2.04+0.82j
|
-1.04-4.75j
|
Контурных Токов
|
3,08+5,57j
|
2.04+0.82j
|
-1.04-4.75j
|
Узловых Потенциалов
|
3,08+5,57j
|
2.04+0.82j
|
-1.04-4.75j
|
2.5 Векторная диаграмма токов и топографическая диаграмма напряжений на комплексной плоскости
8) Строим на комплексной плоскости векторную диаграмму токов и топографическую диаграмму напряжений и график изменения тока в неразветвленной части цепи.
1. [B]
[B]
2. [B]
3. [B]
4. [B]
=
=3.08+5.57j=6.36 [A]
= [A]
рад

(Данные расчета находятся в приложении 12)
2.6
Определение показания вольтметра
9)Определяем показания вольтметра по второму закону Кирхгофа:

pV- 
pV= + =44.06-41.27j+(2.04+0.82j)*25=95.06-20.77j
pV= =97 B
Приложения
Приложение 1:









Приложение 2:





Приложение 3:





Приложение 4:






Приложение 5:





Приложение 6:




Приложение 7:




Приложение 8:




Приложение 9:




Приложение 10:




Приложение 11:




Приложение 12:
График изменения тока в неразветвленной части цепи 
|