Рассматривается определение поля, примеры и простейшие свойства полей, определения подполя, простого поля и поля рациональных чисел.
п.1. Определение поля.
Определение. Пусть - кольцо с единицей 1. Элемент из множества называется обратным в кольце , если  . называется обратным к .
Примеры.
Рассмотрим кольцо целых чисел, то есть кольцо , элемент 2 необратим в этом кольце, так как , элемент 5 необратим в кольце целых чисел. - обратимые элементы в кольце целых чисел
Рассмотрим кольцо рациональных чисел , обратимыми являются все элементы кроме .
Рассмотрим кольцо действительных чисел, то есть кольцо , обратимыми являются все элементы кроме .
Определение. Поле – это кольцо , если:
- коммутативное кольцо (операция коммутативна)
- кольцо с единицей 1, единица .
Всякий ненулевой элемент кольца обратим.
Примеры полей.
- поле рациональных чисел.
- поле действительных чисел.
Это поля с бесконечным числом элементов. Рассмотрим поле с конечным числом элементов.
Поле Галуа - галуафилд. ; . Определим
операции сложения и умножения:
И   - бинарные операции, - унарная
Из этой таблицы видно, что операция - коммутативна, -бинарные операции, - унарная операция, т.к. , .
п.2. Простейшие свойства поля.
Пусть - поле. Обозначение:    .
Если , то .
Доказательство. Пусть , докажем, что , то есть , тогда противоречие с аксиомой поля  . Если , то по аксиоме полей  | ,  .
Если , . умножим равенство справа на , то есть  .
.
Доказательство. Если , то  , умножая обе части равенства на слева,  .
В поле нет делителей 0.
Доказательство. Следует из свойства 3, применяя законы контрапозиции: ,   , значит нет делителей нуля.
Каждое поле является областью целостности.
Доказательство. Следует из определения поля и области целостности.
.
Доказательство.  . Умножим обе части равенства справа на  , где .
, где .
Доказательство. Выпишем правую часть   равна левой части.
, где .
Доказательство. Правая часть   равна левой части.
, .
Доказательство. Правая часть   левая часть.
, .
Доказательство. Левая часть  .
, .
Если , то .
Доказательство. Вычислим произведение    то есть обратный элемент к .
, где .
Доказательство. Левая часть равна  равна правой части.
- коммутативная группа, которая называется мультипликативной группой не равных 0 элементов.
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
Доказательство. Следует из свойств поля: 
1. , так как поле.
2. 
3. 
4. , так как поле
Так как поле – это кольцо определённого вида, то под гомоморфизмами полей понимаются гомоморфизмы полей. Аналогично для изоморфизмов.
п.3. Подполе.
Определение. Подполем поля называется подкольцом с единицей поля , в котором всякий ненулевой элемент обратим. Всякое подполе является полем. Подполе поля , отличное от называется собственным полем.
Определение. Поле называется простым, если оно не имеет собственных подполей.
Пример. Рассмотрим поле действительных чисел, то есть поле . Для того, чтобы найти подполе надо найти подмножества замкнутые относительно операции и  подмножеству. Например, поле рациональных чисел является подполем поля действительных чисел.
п.4. Поле рациональных чисел.
Алгебраическая система называется системой рациональных чисел, если:
Алгебра - это поле с единицей 1.
Множество замкнуто относительно операции и 
Аксиома минимальности, если такое, что:
а) 
б)  , тогда .
Список литературы
Е.Е. Маренич, А.С. Маренич. Вводный курс математики. Учебно-методическое пособие. 2002
В.Е. Маренич. Журнал «Аргумент». Задачи по теории групп.
Кострикин А.И. Введение в алгебру. Ч.1 Основы алгебры. – М.: Физмат лит-ра, 2000
Кострикин А.И. Введение в алгебру. Ч.2 Основы алгебры. – М.: Физмат лит-ра, 2000
Кострикин А.И. Введение в алгебру. Ч.3 Основные структуры алгебры. – М.: Физмат лит-ра, 2000
Кострикин А.И. Сборник задач по алгебре. Изд. третье – М.: Физмат лит-ра, 2001
|