Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Кольца. Примеры колец. Гомоморфизмы и изоморфизмы колец. Подкольца. Кольцо целых чисел

Название: Кольца. Примеры колец. Гомоморфизмы и изоморфизмы колец. Подкольца. Кольцо целых чисел
Раздел: Рефераты по математике
Тип: реферат Добавлен 16:55:00 02 октября 2011 Похожие работы
Просмотров: 1161 Комментариев: 21 Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать

Для изучения предлагаются понятия кольца, коммутативного кольца и области целосности, гомоморфизма и изоморфизма колец, подкольца, а так же свойства кольца целых чисел.

п.1. Понятие кольца.

Определение. Алгебра , где - бинарные операции, - унарная операция, называется кольцом, если выполнены аксиомы.

I. - абелева группа.

1)

2)

3)

4)

II. 1) - ассоциативность умножения.

2) законы дистрибутивности: - левый дистрибутивный закон, - правый дистрибутивный закон.

- называется аддитивной группой кольца.

Определение. Кольцо называется кольцом с единицей , если существует

Определение. Кольцо называется коммутативным, если

Определение. Элементы называются делителями , если

Определение. Кольцо называется областью целостности, если оно обладает свойствами:

Кольцо - коммутативно.

Кольцо с единицей , где .

Кольцо не имеет делителей нуля.

п.2. Примеры колец.

Рассмотрим . Операции - бинарная операция на множестве , операция - унарная операция на множестве , , значит - алгебра. Аксиомы кольца на множестве выполнены, это следует из свойств целых чисел, значит - кольцо. Это кольцо с единицей 1, так как и . Это коммутативное кольцо, так как . Это кольцо без делителей нуля. Кольцо целых чисел является областью целостности.

Пусть - множество целых чётных чисел, - алгебра, кольцо без единицы, коммутативное, без делителей нуля, не является областью целостности.

- проверим, будет ли на множестве - кольцо.

- бинарная операция на множестве .

- бинарная операция на множестве .

- унарная операция на множестве .

Значит - алгебра.

Аксиомы кольца для данной алгебры выполнены, так как , а на аксиомы выполнены (из свойств действительных чисел), значит - это кольцо.

. . Кольцо с единицей - это коммутативное кольцо без делителей нуля, является областью целостности.

Пусть . Определим операции , ; , .

- бинарные операции на множестве

значит - унарная операция на множестве .

, , значит - алгебра. Проверим, является ли эта алгебра кольцом. Для этого проверим аксиомы кольца. Равенство - равенство функции: из определения операций. Рассмотрим произведение , вычислим значения левой и правой частей от а) б). Аналогично проверяется, что все аксиомы кольца выполнены, значит является кольцом. Это кольцо с единицей . Действительно, (свойство единицы). Это коммутативное кольцо, так как . Покажем, что это кольцо с делителями нуля. Пусть , , , (нулевая функция). Вычислим (равно нулевой функции). Значит , - делители нуля, значит кольцо - не является областью целостности.

п.3. Простейшие свойства кольца.

Пусть - кольцо. Выпишем и проверим аксиомы кольца:

.

Доказательство. - абелева группа, имеем

.

Доказательство. - абелева группа, имеем .

, если , если .

Доказательство. По закону сокращения в группе, определенной на множестве .

, если , если .

Доказательство. Следует из свойства 4 групп.

если , если .

Доказательство. Следует из 5 свойства групп.

.

Доказательство. Следует из 6 свойства групп.

.

Доказательство. Докажем, что .

.

Доказательство. Докажем, что рассмотрим сумму . Аналогично доказывается, что .

. Обозначение: .

(правый дистрибутивный закон), (левый дистрибутивный закон).

Доказательство. Правый дистрибутивный закон: левая часть равна равна правой части. Аналогично доказывается левый дистрибутивный закон.

.

Доказательство. Вычислим сумму .

п.4. Гомоморфизмы и изоморфизмы колец.

Дано два кольца и .

Определение. Гомоморфизмом кольца в кольце называется функция и обладающая свойствами:

Другими словами, гомоморфизм колец – это отображения, сохраняющие все операции кольца. Если - гомоморфизм кольца в , то - гомоморфизм абелевых групп в группу .

Теорема. Пусть и - кольца и , обладающих свойствами:

Тогда - гомоморфизм колец.

Доказательство. Из свойства является гомоморфизмом групп и , поэтому обладает свойствами: , , значит по определению - гомоморфизм колец.

Определение. Отображение называется изоморфизмом кольца на , если обладает свойствами:

- гомоморфизм колец.

- биекция.

Другими словами: изоморфизм – это гомоморфизм, являющийся биекцией.

п.5. Подкольца.

Пусть - кольцо, , .

Определение. Множество - замкнуто относительно операции , если .

Множество - замкнуто относительно операции , если . Множество - замкнуто относительно операции , если .

Теорема. Пусть - кольцо, , , если - замкнуто относительно операции , то - кольцо, которое называется подкольцом, кольца .

Доказательство. - бинарные операции, - унарная операция, так как - замкнутое множество. Так как , то существует , так как - замкнуто относительно операции , то , значит - алгебра, так как аксиомы выполнены на , то они выполнены и на , потому алгебра - кольцо.

Теорема. Пусть - числовое кольцо с единицей 1, тогда оно содержит подкольцо целых чисел.

п.6. Аксиоматическое определение кольца целых чисел.

Алгебраическая система , где бинарные операции, - унарная операция, , , называется системой целых чисел, если выполнены три группы аксиом:

I. - кольцо.

Абелева группа

Аддитивная группа

II. Множество - замкнуто относительно операций и алгебраическая система является системой натуральных чисел (системой Пеано).

Для ,

Для ,

Для ,

Для ,

Для ,

Для ,

Аксиома индукции: пусть . Если множество удовлетворяет условиям:

а)

б) , , то

III. Аксиома минимальности.

Если и обладает свойствами:

а)

б) , то .

Свойства целых чисел.

Теорема 1. О делении с остатком.

| , где . Число называется делимым, - делителем, - частным, - остатком при делении на .

Доказательство. Докажем существование хотя бы одной пары чисел , . Для этого рассмотрим множество . Множество содержит как отрицательные, так и неотрицательные числа, пусть - наименьшее неотрицательное число в , тогда . Докажем, что , предположим противное . Рассмотрим число . противоречие с выбором . Доказано, что , . Докажем единственность чисел и , пусть . , . Докажем, что , предположим противное . Пусть . Имеем противоречие, так как между числами нет чисел, делящихся на . Доказано, что , если , то , а отсюда следует, что . Доказана единственность чисел и .

Список литературы

Е.Е. Маренич, А.С. Маренич. Вводный курс математики. Учебно-методическое пособие. 2002

В.Е. Маренич. Журнал «Аргумент». Задачи по теории групп.

Кострикин А.И. Введение в алгебру. Ч.1 Основы алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Введение в алгебру. Ч.2 Основы алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Введение в алгебру. Ч.3 Основные структуры алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Сборник задач по алгебре. Изд. третье – М.: Физмат лит-ра, 2001

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита10:15:34 03 ноября 2021
.
.10:15:31 03 ноября 2021
.
.10:15:30 03 ноября 2021
.
.10:15:29 03 ноября 2021
.
.10:15:28 03 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Реферат: Кольца. Примеры колец. Гомоморфизмы и изоморфизмы колец. Подкольца. Кольцо целых чисел

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте