М.И. Векслер, Г.Г. Зегря
Сегнетоэлектрики представляют собой специфический класс сред, характеризующийся высоким значением диэлектрической проницаемости (на основной кривой поляризации), нелинейностью зависимости , гистерезисом зависимостей D(E) и P(E), а также сохранением поляризованности после отключения внешнего поля. Именно последнее свойство наиболее важно, и во многих случаях под словом "сегнетоэлектрик" подразумевается "область спонтанной поляризованности ", слабо чувствительная к дополнительному наложению электрического поля.
Расчет поля сегнетоэлектриков производится следующим образом. По формулам
|
(50) |
находится связанный заряд, а затем находится создаваемое им поле с помощью закона Кулона, как если бы этот заряд был свободным:
|
(51) |
Если есть выраженная симметрия, то возможно и применение теоремы Гаусса в виде . Мотивацией такого метода является уравнение Максвелла .
При наличии, помимо сегнетоэлектриков, еще и сторонних зарядов поле последних суммируется с полем сегнетоэлектриков.
Для нахождения смещения привлекается соотношение
|
(52) |
При этом никаких ε для сегнетоэлектрика вводиться не должно.
Задача. Имеется бесконечная пластина из однородного сегнетоэлектрика с поляризованностью . Найти векторы и внутри и вне пластины, если вектор направлен a) перпендикулярно, b) параллельно поверхности пластины.
Решение Разберемся прежде всего в том, какова будет в обоих случаях, то есть какие связанные заряды присутствуют. Для этого надо проверить, как изменяется в направлении самого себя. В случае б) , в том числе и на границах; на них , конечно, изменяется, но не в направлении . А вот в случае а) имеет место скачок от (до) нуля на границах как раз в направлении . Соответственно, поверхностная плотность заряда равна:
причем знак плюс берется для той поверхности, в сторону которой "смотрит" вектор , по определению σ'. Как уже говорилось,
Следовательно, в случае а) мы имеем ситуацию, аналогичную конденсатору и получаем
в то время как
Заметим, что в случае а) ошибкой было бы записать D = σ'; теорема Гаусса применяется к вектору .
Соответственно, по формуле имеем:
Задача. Пластина из сегнетоэлектрика с поляризованностью P, перпендикулярной поверхностям, помещена в конденсатор, обкладки которого замкнуты друг на друга. Пластина занимает η-ю часть зазора и параллельна обкладкам конденсатора. Найти E и D в пластине и в остающемся незаполненным зазоре.
Решение Если Eplate и Eair обозначают электрическое поле, соответственно, в пластине и в воздушном зазоре, то, ввиду замкнутости обкладок конденсатора друг на друга,
Величина D в зазоре и в пластине одна и та же, так как любой другой вариант противоречил бы условиям для нормальной компоненты D на границе пластина-воздух.
Dplate = ε0Eplate+P = Dair = ε0Eair |
Из последней цепочки равенств имеем
Используя это, получаем
η Eplate +(1–η)(Eplate+ ε0–1P) = 0 |
откуда
Eplate = –(1–η)ε0–1P, Eair = ηε0–1P |
Смещение всюду одно и то же и равно Dplate = Dair = η P.
Задача. Тонкий диск радиуса R из сегнетоэлектрического материала поляризован однородно и так, что вектор лежит в плоскости диска. Найти и в центре диска, считая, что толщина диска h намного меньше, чем R.
Решение Введем систему координат так, чтобы плоскость xy была плоскостью диска, а . Найдем связанные заряды. всюду равна нулю, за исключением обода диска (на круглых поверхностях диска тоже , так как там не меняется в направлении ). Поверхностный заряд составит
σ' = –Pr|R+0+Pr|R–0 = Psinφ |
где φ угол в полярной системе координат, отсчитываемый от оси x, как обычно. Зная σ', можно найти поле по закону Кулона ():
При получении последнего равенства использовано условие R>> h. Обратим внимание на то, что при R→∞ .
Смещение найдется просто как
Список литературы
1. И.Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. - 448 с.; или 2-е изд., М.: Наука, 1988. - 416 с.
2. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике (под ред. М.М. Бредова), 2-е изд., М.: Наука, 1970. - 503 с.
3. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. т.8 Электродинамика сплошных сред, 2-е изд., М.: Наука, 1992. - 661 с.
|