Содержание
Введение
Глава 1. Теорема о представлении дзета-функции Дедекинда произведением L-рядов Дирихле
Глава 2. Вывод функционального уравнения дзета-функции Дедекинда
Заключение
Список используемой литературы
В данной работе мы рассмотрим теорему о представлении дзета-функции Дедекинда в виде произведения L-функций и пример приложения этой теоремы к выводу функционального уравнения дзета-функции Дедекинда.
Определим некоторые понятия. Пусть k - конечное расширение поля Q
, a - некоторый главный идеал поля k. Рассмотрим его разложение на простые идеалы
где  для почти всех p.
Через N (a) обозначим абсолютную норму идеала a, т.е. Определим дзета-функцию Дедекинда :
 
Кроме того каждому характеру сопоставим L-ряд

Докажем следующую теорему
Теорема. Пусть K - конечное абелево расширение поля k; тогда
где произведение справа распространяется на все примитивные характеры, согласованные с характерами группы классов
где S - исключительное множество в k,
- группа всех идеалов поля k, взаимно простых с S,
- подгруппа конечного индекса, образованная теми элементами из
, которые содержат нормы относительно k идеалов из K, взаимно простых с S,
- подгруппа в подгруппе главных идеалов в
, состоящая из таких главных идеалов
, для которых
и
Доказательство проводится в терминах локальных множителей, причем мы рассмотрим по отдельности неразветвленный и разветвленный случаи.
1. Пусть p - неразветвленный простой идеал из k, т.е.

где - различные простые идеалы в K. Согласно теории полей классов,
где 
Поэтому соответствующий локальный множитель слева равен

в то время как соответствующий локальный множитель справа равен

Ввиду того, что f - наименьшее положительное число такое, что для всех , имеет место следующее легко проверяемое тождество

отсюда, если положить , следует нужное равенство.
2. Доказательство для разветвленных простых идеалов сложнее и использует функциональные уравнения, которым удовлетворяют различные L-функции. Начнем с равенства

и докажем, что функция тождественно равна единице. равна произведению конечного числа выражений вида

соответствующих разветвленным идеалам p.
теорема дзета функция дедекинд
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
Если это произведение непостоянно, оно имеет полюс или нуль в некоторой чисто мнимой точке , где . В силу функционального уравнения представляет собой отношение гамма-функций и, следовательно, имеет только вещественные нули и полюсы. Поэтому , также является полюсом или нулем функции g. Мы знаем, однако, что не является нулем или полюсом ни для L-рядов, ни для функций . Следовательно, g постоянна, а именно равна 1.
Пусть k=Q
, K=Q
(
), где - первообразный корень из 1 степени m,
. Тогда
(1)
где - дзета-функция Римана, - L-функция Дирихле, произведение справа распространяется на все неглавные рациональные характеры по модулю m.
Выведем функциональное уравнение 
Воспользуемся функциональным уравнением для :
,
где сумма Гаусса. Воспользуемся (1), получим
,
,
используя свойство сумм Гаусса, получим
,
.
Пусть для любого вещественного характера , тогда
,
.
Известно, что для каждого комплексного характера существует сопряжённый, тогда получим
,
,
,
.
Используя функциональное уравнение для дзета-функции Римана:

получим


где D - дискриминант поля K.
Таким образом мы получили функциональное уравнение для дзета-функции Дедекинда в случае, когда k=Q
, K=Q
(
).
В данной работе мы доказали теорему о представлении дзета-функции Дедекинда в виде произведения L-функций и с помощью этой теоремы вывели функциональное уравнение дзета-функции Дедекинда в случае k=Q
, K=Q
(
), где - первообразный корень из 1 степени m.
1. Касселс Дж., Фрёлих А. Алгебраическая теория чисел. - М., "Мир", 1969, с.328 - 330
|