Федеральное агентство по образованию ГОУ ВПО
Филиал Уральского государственного экономического университета в г. Березники
Кафедра математики и естественных наук
Контрольная работа № 1
по дисциплине: "Математика"
Выполнил:
Студентка I курса,
группы ЭКПС-091
Лоскутова Ирина Петровна
Проверил:
к. ф-м. н., профессор
Кобзев Виктор Николаевич
Березники
2009
Задача 1.1 Вычислить определитель 4-го порядка

Решение. Так как элемент , то 1-ую строку нужно умножить на (– 2) и прибавить ко 2-ой строке; 1-ую строку умножаем на (– 3) и прибавляем к 3-ей строке; 1-ую строку умножаем на (– 4) и прибавляем к 4-ой строке, получаем матрицу:

Ответ: .
Задача 1.2 Решить систему матричным способом

Решение. В матричной форме система имеет вид: (1), где
; ; .
Найдем определитель матрицы А:
.
Так как , то матрица А невырожденная и обратная матрица существует.
Найдем матрицу , транспонированную к А:
.
Найдем алгебраические дополнения к матрице :
;
;
;
;
;
;
;

.
Из алгебраических дополнений элементов матрицы составим присоединенную матрицу :
.
Вычислим обратную матрицу :
.
Проверим правильность вычисления обратной матрицы:



По формуле (1) вычислим:

Ответ: 
Проверка:

Þ
Þ Система решена верно.
Задача 1.3 Решить систему методом Крамера

Решение. Найдем определитель системы

Так как , то по теореме Крамера система имеет единственное решение.
;
.
математический матрица невырожденный транспонированный
По формулам Крамера:
;

Ответ: решение системы .
Задача 1.4 Найти общее решение системы, используя метод Гаусса

Решение. Расширенная матрица система имеет вид:

Так как элемент , то 1-ую строку прибавляем ко 2-ой строке, 1-ую строку умножаем на (– 2) и прибавляем к 3-ей строке, 1-ую строку умножаем на 4 и прибавляем к 4ой строке, исключим элемент из всех строк, начиная со второй. Результаты запишем в матрицу:

Так как элемент , то, прибавляем 2-ую строку к 3-ей, умножаем 2-ую строку на (– 2) и прибавляем к 4-ой строке, исключим элемент из 3-ей и 4ой строк. Результаты запишем в матрицу:

Так как элемент , то, умножаем 3-ю строку на (– 1) и прибавляем к 4-ой строке, исключим элемент из 4-ой строки. Результаты запишем в матрицу:

Система уравнений примет вид:
,
– связные элементы, – свободная, 
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение



Ответ:

Проверка. Подставим все значения в первое уравнение системы.

Получим:

Þ система решена верно.
Задача 1.5
Даны векторы
, .
Найти: 1) , 2) , 3) , 4) , 5) .
Решение
, .
1) .
2) 
.
3) .
4) 
Т.к. , то




5) .
Ответ:
1) ,
2) ,
3) ,
4) ,
5) .
|