М.И. Векслер, Г.Г. Зегря
Рассмотрим пример сферической системы ρ = ρ(r), кроме того, возможно, имеются заряженные сферы (Ri, σi) и/или точечный заряд qc в центре. Помимо этого, ε = ε(r). Согласно теореме Гаусса,
qinside = 4π r2 Dr = 4π ε0ε(r) r2 Er |
(31) |
 |
(32) |
 |
(33) |
При наличии только объемного стороннего заряда ρ
 |
(34) |
В точках разрыва ε(r) (на стыке двух диэлектриков) или qinside(r) (в момент "перехода" через заряженную сферу) соответствующая производная ε'(r) или qinside'(r) имеет разрыв. При этом поверхностный связанный заряд составляет:
 |
(35) |
Другие значения r проверять на наличие связанного заряда бессмысленно, так как там заведомо σ' = 0.
Задача. Имеются две концентрические заряженные сферы (σ1, R1 и σ2, R2). Найти Er(r), φ(r) и σ ', если пространство между сферами заполнено однородным диэлектриком с проницаемостью ε.
Решение Такая задача, только без диэлектрика между обкладками, уже была решена нами с использованием теоремы Гаусса. Единственным отличием здесь будет связь Dr(r) и Er(r) в области R1<r<R2: если раньше она была Dr = ε0Er, то теперь Dr = ε0ε Er. Это повлечет за собой некоторые изменения в формулах.
Как и раньше,
причем
qinside |
= |
0 при r<R1 |
4πσ1R12 при R1<r<R2 |
4πσ1R12+4πσ2R22 при r>R2 |
Поле на каждом из участков будет
Er |
= |
0 при r<R1 |
 |
 |
При вычислении потенциала мы должны вычислить . При этом необходимо правильно выписывать Er на каждoм участке:
φ(r) |
= |
 |
= |
 |
φ(r) |
= |
 |
= |
 |
φ(r) |
= |
 |
= |
 |
В некоторых выражениях для φ(r) (но не всюду!) появилась дополнительная величина ε.
Для нахождения σ ' на сферах r = R1 и r = R2 нам потребуются значения поляризованности с обеих сторон каждой из сфер:
Нулевые значения появились из-за отсутствия диэлектрика в областях r<R1 и r>R2. Сразу же находим и (на других поверхностях никакого связанного заряда нет):
Легко проверить, что суммарный связанный заряд, то есть , равен нулю, как и должно быть.
Задача. Шар радиуса R равномерно заряжен по объему сторонним зарядом ρ. Проницаемость шара ε. Найти Er(r), φ(r), ρ'(r), σ' на краю шара.
Ответ:  
 
 .
Список литературы
1. И.Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. - 448 с.; или 2-е изд., М.: Наука, 1988. - 416 с.
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
2. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике (под ред. М.М. Бредова), 2-е изд., М.: Наука, 1970. - 503 с.
3. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. т.8 Электродинамика сплошных сред, 2-е изд., М.: Наука, 1992. - 661 с.
|