Министерство высшего образования Российской Федерации
Ижевский Государственный Университет
Кафедра ВТ
Курсовая работа
Вариант Ж - 5
Выполнил: студент гр. 462
Проверил: Веркиенко Ю. В.
2006 г.
Содержание
Цель работы
Задание
1. Генерирование выборок
2. Поиск оценок для выборок
3. Построение доверительных интервалов математического ожидания и дисперсии
4. Построение доверительного интервала для коэффициента корреляции
5. Построение эмпирической интегральной функции распределения и теоретической (для нормального закона с оценками среднего и дисперсии)
6. Построение эмпирической кривой плотности распределения и теоретической
7. Проверка гипотезы о величине среднего (), дисперсии (2), о нормальном законе распределения (по 2 и по Колмогорову)
8. Проверка гипотезы о независимости выборок и об одинаковой дисперсии в выборках
9. Составление системы условных уравнений и поиск по МНК оценки коэффициентов регрессии
10. Построение доверительных интервалов для коэффициентов регрессии, остаточной дисперсии и ошибок прогноза
11. Оценка значимости факторов по доверительным интервалам
Выводы
Цель работы
Выполнить все одиннадцать пунктов работы по заданию и сделать выводы.
Задание
На ЭВМ по программе случайных нормальных чисел с законом N(m,s2) генерировать две выборки объема n
x1,¼,xn (1)
y1,¼,yn (2)
Для выборок (1), (2) найти оценки Ex, Sx, wx, wy.
Для (1) построить доверительные интервалы для математического ожидания (считая s2 известной и неизвестной) и дисперсии.
Для (1), (2) построить доверительный интервал для коэффициента корреляции.
Для (1) построить эмпирическую интегральную функцию распределения и теоретическую (для нормального закона с оценками среднего и дисперсии)
Для (1) построить эмпирическую кривую плотности распределения, разбив интервал (x(1), x(n)) на 5-6 интервалов. На этом же графике изобразить теоретическую кривую.
Проверить гипотезы: о величине среднего (m), дисперсии (s2), о нормальном законе распределения (по c2 и по Колмогорову).
Проверить гипотезу о независимости выборок (1), (2), об одинаковой дисперсии в выборках.
Для уравнения (модели) с заданными коэффициентами bi составить систему условных уравнений, считая и найти по МНК оценки коэффициентов регрессии. Значения брать из равномерного закона или с равномерным шагом на отрезке [–1, 1].
Построить доверительные интервалы для коэффициентов регрессии, остаточной дисперсии и ошибок прогноза в точках x=-1, 0, 1.
По доверительным интервалам оценить значимость факторов xi=xi. Фактор считается незначимым, если доверительный интервал накрывает значение, равное нулю.
При выполнении курсовой работы использовать значения: среднее выборок Х и У равно 3, дисперсия выборок равна 1. Уровень значимости a = 0.05. С.к.о. ошибки измерений в задаче регрессии 0.2.
1. Генерирование выборок
На ЭВМ по программе случайных нормальных чисел с законом N(m,s2) генерируем две выборки объема n = 17, где m = 3 и s2 = 1
x1,¼,xn (1)
y1,¼,yn (2)
Вариационные ряды:
(1) (2)
2. Поиск оценок для выборок
Для найденных выборок (1), (2) находим оценки Ex, Sx, wx, wy.
Выборочное среднее:
Квадрат средне – квадратичного отклонения:
Оценка центрального момента 3-го порядка:
Оценка центрального момента 4-го порядка:
Коэффициент эксцесса:
Коэффициент асимметрии:
Оценка корреляционного момента:
Оценка коэффициента корреляции:
Размах выборки:
3. Построение доверительных интервалов математического ожидания и дисперсии
Для (1) строим доверительные интервалы для математического ожидания (считая s2 известной и неизвестной) и дисперсии.
Считаем s2 известной.
Считаем s2 неизвестной.
Таким образом, при различных вариантах μmin, μmax имеют почти одинаковые значения.
Подставляем табличные значения 24,7 и 5,01 в знаменатели подкоренного выражения и получаем, что
,
,
4. Построение доверительного интервала для коэффициента корреляции
Для (1), (2) строим доверительный интервал для коэффициента корреляции.
U = 1,96
Так как , то пусть , отсюда z = 0,693
То есть |z| ≤ 0,693.
Если z = –0,693 и z = 0,693, то получим доверительный интервал для коэффициента корреляции –0,6 < Rxy < 0,6.
5. Построение эмпирической интегральной функции распределения и теоретической (для нормального закона с оценками среднего и дисперсии)
Создание ступенчатой функции, при скачке высотой 1/n.
Построение эмпирических Fx(u), Fy(u) и теоретических интегральных функций распределения. В последних средние и с. к. о. Взяты равными вычисленным оценкам математического ожидания и с. к. о.
Пусть u = 0, 0.001…6, тогда
,
- - - - теоретическая функция распределения.
____ функция для нормального закона с оценками среднего и дисперсии.
6. Построение эмпирической кривой плотности распределения и теоретической
случайный выборка доверительный интервал
Для (1) построить эмпирическую кривую плотности распределения, разбив интервал (х(1),х(n)) на несколько подинтервалов. На этом же графике изобразить теоретическую кривую.
k*sigx - ширина интервалов разбиения, k - коэффициент шага разбиния. взято симметрично от среднего значения по 4 интервала
- - - - теоретическая функция плотности распределения.
____ эмпирическая кривая плотности распределения.
7. Проверка гипотезы о величине среднего (m), дисперсии (s2), о нормальном законе распределения (по c2 и по Колмогорову)
Проверка по критерию согласия Пирсона:
По данным выборки найдем теоретические частоты , затем, сравнивая их с наблюдаемыми частотами , рассмотрим статистику - случайная физическая величина, имеющая распределение с k степенями свободы. Если сумма , то выборочные данные согласуются с нормальным распределением и нет оснований отвергать нулевую гипотезу.
Определим с степенями свободы:
Как видно условие выполняется.
Проверка по критерию согласия Колмогорова:
Условие:
где , где максимальное значение разности между экспериментальным и теоретическим распределением нормального закона.
при для X, и при для Y.
- критическое значение квантиля распределения Колмогорова.
Так как условие – выполняется, то гипотеза о нормальном законе распределения подтверждена.
8. Проверка гипотезы о независимости выборок и об одинаковой дисперсии в выборках
Чтобы из выборки х получить вариационный ряд необходимо осуществить 18 инверсий (т. е. Q=18).
Проверим гипотезу о независимости :
Так как из нормального закона, то
Так как условие – выполняется, то выборки независимы.
Теперь нам необходимо проверить гипотезу об одинаковой дисперсии в выборках
:
так как F< ,то нет оснований, отвергать нулевую гипотезу.
9. Составление системы условных уравнений и поиск по МНК оценки коэффициентов регрессии.
Для уравнения модели
Генерируем выборку с шагом
h = 1/N, где N = 100
Пусть даны коэффициенты регрессии:
β0 = 0; β1 = 1; β2 = 1; β3 = 0; β4 = 0; β5 = 1;
Значения матрицы плана
Сформируем элементы матрицы А вида:
Формирование правых частей нормальной системы
Где случайная величина, сгенерированная по нормальному закону с учётом коэффициентов регрессии.
Информационная матрица
Решение относительно коэффициентов регрессии.
Для нахождения вида уравнения регрессии необходимо вычислить коэффициенты регрессии данного уравнения.
Уравнение регрессии :
Графики уравнения регрессии и результатов измерений, по которым определялись коэффициенты регрессии:
- - - - уравнение регрессии
____ случайная выборка из нормального закона
10. Построение доверительных интервалов для коэффициентов регрессии, остаточной дисперсии и ошибок прогноза
Доверительные интервалы будем находить для каждого элемента вектора оценок коэффициентов регрессии .
В случае нормальных ошибок доверительные интервалы находятся из двойного неравенства:
где - остаточная сумма квадратов; - диагональный элемент ковариационной матрицы вида
так как слагаемых в уравнении регрессии шесть.
(1)
(2)
(3)
Строим интервал для коэф-та регрессии:
Доверительный интервал , где из таблицы находим.
k = 6;
Тогда для r = [1…6] будем
брать соответствующий элемент ковариационной матрицы, и находить доверительный интервал с учётом (1) (2) (3).
Нахождение доверительного интервала для (фактор ):
-
Нахождение доверительного интервала для (фактор ):
Нахождение доверительного интервала для (фактор ):
Нахождение доверительного интервала для (фактор ):
Нахождение доверительного интервала для (фактор ):
Нахождение доверительного интервала для (фактор ):
Доверительные интервалы для ,, не накрывают значение равное нулю, следовательно, факторы ,, являются значимыми, а факторы ,, - незначимыми.
11. Оценка значимости факторов по доверительным интервалам
Исключив из уравнения регрессии незначимые факторы, приходим к следующему виду:
Таким образом, из графика видно, что при исключении из уравнения регрессии незначимых факторов график не изменился. Найдем доверительный интервал для остаточной дисперсии
при .
А доверительный интервал найдём из следующего двойного неравенства:
Таким образом, доверительный интервал для остаточной дисперсии есть:
Выводы
Таким образом, в данной курсовой работе были изучены методы обработки случайных выборок с нормальным законом распределения. Так же найдены оценки коэффициентов регрессии и построены доверительные интервалы. В последнем пункте работы были оценены значимости факторов по доверительным интервалам.
|