ПОХІДНІ ТА ДИФЕРЕНЦІАЛИ ФУНКЦІЇ БАГАТЬОХ ЗМІННИХ
1 Частинні похідні
Нехай функція визначена в деякому околі точки . Надамо змінній x приросту , залишаючи змінну незмінною, так, щоб точка належала заданому околу.
Величина

називається частинним приростом функції за змінноюx.
Аналогічно вводиться частинний приріст функції за змінною :
.
Якщо існує границя
,
то вона називається частинною похідною функції в точці за змінною x і позначається одним із таких символів:
.
Аналогічно частинна похідна функції за визначається як границя

і позначається одним із символів:
.
Згідно з означенням при знаходженні частинної похідної обчислюють звичайну похідну функції однієї змінної x, вважаючи змінну сталою, а при знаходженні похідної сталою вважається змінна x. Тому частинні похідні знаходять за формулами і правилами обчислення похідних функцій однієї змінної.
Частинна похідна (або ) характеризує швидкість зміни функції в напрямі осі (або ).
З’ясуємо геометричний зміст частинних похідних функції двох змінних. Графіком функції є деяка поверхня (рис 1). Графіком функції є лінія перетину цієї поверхні з площиною . Виходячи з геометричного змісту похідної для функції однієї змінної, отримаємо, що , де – кут між віссю і дотичною, проведеною до кривої в точці . Аналогічно .

Рисунок 1 – Геометричний зміст частинних похідних
Для функції n змінних можна знайти n частинних похідних:
,
де
,
.
Щоб знайти частинну похідну , необхідно взяти звичайну похідну функції за змінною , вважаючи решту змінних сталими.
Якщо функція задана в області і має частинні похідні в усіх точках , то ці похідні можна розглядати як нові функції, задані в області .
Якщо існує частинна похідна за x від функції , то її називають частинною похідною другого порядку від функції за змінною x і позначають або .
Таким чином, за означенням
або .
Якщо існує частинна похідна від функції за змінною , то цю похідну називають мішаною частинною похідною другого порядку від функції і позначають , або .
Отже, за означенням
або .
Для функції двох змінних можна розглядати чотири похідні другого порядку:
.
Якщо існують частинні похідні від частинних похідних другого порядку, то їх називають частинними похідними третього порядку функції , їх вісім:
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение

.
Виникає запитання: чи залежить результат диференціювання від порядку диференціювання? Інакше кажучи, чи будуть рівними між собою мішані похідні, якщо вони взяті за одними і тими самими змінними, одне й те саме число разів, але в різному порядку? Наприклад, чи дорівнюють одна одній похідні
і або і ?
У загальному випадку відповідь на це запитання негативна.
Проте справедлива теорема, яку вперше довів К.Г.Шварц.
Теорема
(про мішані похідні).Якщо функція визначена разом із своїми похідними в деякому околі точки , причому похідні та неперервні в точці , то в цій точці
.
Аналогічна теорема справедлива для будь-яких неперервних мішаних похідних, які відрізняються між собою лише порядком диференціювання.
2 Диференційованість функції
похідна диференціал функція змінна
Нехай функція визначена в деякому околі точки . Виберемо прирости і так, щоб точка належала розглядуваному околу і знайдемо повний приріст функції в точці :
.
Функція називається диференційовною в точці М, якщо її повний приріст в цій точці можна подати у вигляді
, (1)
де та – дійсні числа, які не залежать від та , – нескінченно малі при і функції.
Відомо, що коли функція однієї змінної диференційовна в деякій точці, то вона в цій точці неперервна і має похідну. Перенесемо ці властивості на функції двох змінних.
Теорема 1
(неперервність диференційовної функції).
Якщо функція диференційовна в точці М, то вона неперервна в цій точці.
Доведення
Якщо функція диференційовна в точці М, то з рівності (1) випливає, що . Це означає, що функція неперервна в точці М.
Теорема 2
(існування частинних похідних диференційовної функції). Якщо функція диференційовна в точці , то вона має в цій точці похідні та і .
Доведення
Оскільки диференційовна в точці ,то справджується рівність (1). Поклавши в ній , отримаємо,
.
Поділимо обидві частини цієї рівності на і перейдемо до границі при :
.
Отже, в точці існує частинна похідна . Аналогічно доводиться, що в точці існує частинна похідна .
Твердження, обернені до теорем 1 і 2, взагалі кажучи, неправильні, тобто із неперервності функції або існування її частинних похідних ще не випливає диференційовність. Наприклад, функція неперервна в точці , але не диференційовна в цій точці. Справді, границі

не існує, тому не існує й похідної . Аналогічно впевнюємося, що не існує також похідної . Оскільки задана функція в точці не має частинних похідних, то вона в цій точці не диференційовна.
Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:
— Разгрузит мастера, специалиста или компанию;
— Позволит гибко управлять расписанием и загрузкой;
— Разошлет оповещения о новых услугах или акциях;
— Позволит принять оплату на карту/кошелек/счет;
— Позволит записываться на групповые и персональные посещения;
— Поможет получить от клиента отзывы о визите к вам;
— Включает в себя сервис чаевых.
Для новых пользователей первый месяц бесплатно.
Зарегистрироваться в сервисе
Більш того, відомо приклади функцій, які є неперервними в деяких точках і мають в них частинні похідні, але не є в цих точках диференційовними.
Теорема 3
(достатні умови диференційовності ).
Якщо функція має частинні похідні в деякому околі точки і ці похідні неперервні в точці М, то функція диференційовна в точці М.
Доведення
Надамо змінним x і приростів , таких, щоб точка належала даному околу точки . Повний приріст функції запишемо у вигляді
. (2)
Вираз у перших квадратних дужках рівності (2) можна розглядати як приріст функції однієї змінної x, а в других – як приріст функції змінної . Оскільки дана функція має частинні похідні, то за теоремою Лагранжа отримаємо:

.
Похідні та неперервні в точці М, тому
,
.
Звідси випливає, що
,
,
де , – нескінченно малі функції при і .
Підставляючи ці вирази у рівність (2), знаходимо
, а це й означає, що функція диференційовна в точці .
З теорем 2 і 3 випливає такий наслідок: щоб функція була диференційовною в точці, необхідно, щоб вона мала в цій точці частинні похідні, і достатньо, щоб вона мала в цій точці неперервні частинні похідні.
Зазначимо, що для функції однієї змінної існування похідної в точці є необхідною і достатньою умовою її диференційовності в цій точці.
3 Повний диференціал функції та його застосування до обчислення функцій і похибок. Диференціали вищих порядків
Нагадаємо, що коли функція диференційовна в точці , то її повний приріст у цій точці можна подати у вигляді
,
де і при .
Повним диференціалом диференційовної в точці функції називається лінійна відносно та частина повного приросту цієї функції в точці M, тобто
. (3)
Диференціалами незалежних змінних x та назвемо прирости цих змінних . Тоді з урахуванням теореми 2 рівність (3) можна записати так:
. (4)
Аналогічна формула має місце для диференційовної функції трьох змінних :
. (5)
З формул (4) і (5) може здатися, що повний диференціал існуватиме у кожній точці, в якій існують частинні похідні. Але це не так. Згідно з означенням, повний диференціал можна розглядати лише стосовно диференційовної функції.
Теореми та формули для диференціалів функції однієї змінної повністю зберігаються і для диференціалів функцій двох, трьох і т.д. змінних . Так, незалежно від того, від яких аргументів залежать функції u і , завжди справедливі рівності




Покажемо, що різниця між повним приростом і диференціалом при і є нескінченно мала величина вищого порядку, ніж величина .
Дійсно, з формул (1) і (3) маємо
,
оскільки функції – нескінченно малі при , , а та – обмежені функції:
.
Отже, різниця – нескінченно мала величина вищого порядку, ніж . Тому повний диференціал називають також головною частиною повного приросту диференційовної функції. При цьому виконується наближена рівність або
. (6)
Ця рівність тим точніша, чим менша величина . Рівність (6) широко використовується у наближених обчисленнях, оскільки диференціал функції обчислюється простіше, ніж повний приріст.
Покажемо, як за допомогою диференціала можна оцінити похибку в обчисленнях.
Нехай задана диференційовна функція , незалежні змінні якої виміряні з точністю . Потрібно знайти похибку, з якою обчислюється u.
Природно вважати, що ця похибка дорівнює величині
.
Для малих значень маємо
,
звідки
.
Якщо через позначити максимальну абсолютну похибку змінної , то можна отримати значення максимальної абсолютної похибки функції :
. (7)
Щоб оцінити максимальну відносну похибку функції u, поділимо обидві частини рівності (7) на :
.
Оскільки , то
,
або
,
тобто максимальна відносна похибка функції дорівнює максимальній абсолютній похибці її логарифма.
Введемо поняття диференціала вищого порядку.
Нехай функція незалежних змінних , . Повний диференціал цієї функції, знайдений за формулою (3), називають ще диференціалом першого порядку. Диференціал другого порядку визначають за формулою
.
Тоді, якщо функція має неперервні частинні похідні, то
,
звідки
. (8)
Символічно це записують так:
.
Аналогічно можна отримати формулу для диференціала третього порядку:
.
Застосовуючи метод математичної індукції, можна отримати формулу для диференціала n-го порядку:
. (9)
Зазначимо, що формула (9) справедлива лише для випадку, коли змінні x і функції є незалежними змінними.
4 Похідна складеної функції. Повна похідна. Інваріантність форми повного диференціала
Нехай – функція двох змінних та , кожна з яких, у свою чергу, є функцією незалежної змінної :

тоді функція є складеною функцією змінної .
Теорема.
Якщо функції диференційовні в точці , а функція диференційовна в точці , то складена функція також диференційовна в точці . Похідну цієї функції знаходять за формулою
. (10)
Доведення
За умовою теореми ,
де та при , .
Поділимо на і перейдемо до границі при :

Аналогічно знаходять похідну, якщо число проміжних змінних більше двох. Наприклад, якщо , де , то
. (11)
Зокрема, якщо , а , то
,
а оскільки , то
. (12)
Цю формулу називають формулою для обчислення повної похідної (на відміну від частинної похідної ).
Розглянемо загальніший випадок. Нехай –
функція двох змінних та , які, в свою чергу, залежать від змінних : , , тоді функція є складеною функцією незалежних змінних та , а змінні та – проміжні.
Аналогічно попередній теоремі доводиться таке твердження.
Якщо функції та диференційовні в точці , а функція диференційовна в точці , то складена функція диференційовна в точці і її частинні похідні знаходяться за формулами:
; . (13)
Формули (13) можна узагальнити на випадок більшого числа змінних. Якщо , де , то

Знайдемо диференціал складеної функції. Скориставшись формулами (13), отримаємо

Отже, диференціал функції , де , , визначається формулою
, (14)
де
.
Порівнявши формули (14) і (4) дійдемо висновку, що повний диференціал функції має інваріантну (незмінну) форму незалежно від того, чи є x та незалежними змінними, чи диференційовними функціями змінних u та v. Проте формули (4) і (14) однакові лише за формою, а по суті різні, бо у формулі (4) і – диференціали незалежних змінних, а у формулі (14) і – повні диференціали функцій та .
Диференціали вищих порядків властивості інваріантності не мають. Наприклад, якщо , де , , то
(15)
Формула (15) відрізняється від формули (8), оскільки для складеної функції диференціали та можуть і не дорівнювати нулю. Отже, для складеної функції , де , , формула (8) неправильна.
5 Диференціювання неявної функції
Нехай задано рівняння
, (16)
де – функція двох змінних.
Нагадаємо, що коли кожному значенню x з деякої множини відповідає єдине значення , яке разом з x задовольняє рівняння (16), то кажуть, що це рівняння задає на множині неявну функцію .
Таким чином, для неявної функції , заданої рівнянням (16), має місце тотожність
.
Які ж умови має задовольняти функція щоб рівняння (16) визначало неявну функцію і при тому єдину? Відповідь на це запитання дає така теорема існування неявної функції [8].
Теорема.
Нехай функція і її похідні та визначені та неперервні у будь-якому околі точки і , а ; тоді існує окіл точки , в якому рівняння визначає єдину неявну функцію , неперервну та диференційовну в околі точки і таку, що .
Знайдемо похідну неявної функції. Нехай ліва частина рівняння (16) задовольняє зазначені в теоремі умови, тоді це рівняння задає неявну функцію , для якої на деякій множині точок x має місце тотожність . Оскільки похідна функції, що тотожно дорівнює нулю, також дорівнює нулю, то повна похідна . Але за формулою (12) маємо , тому , звідки
. (17)
За цією формулою знаходять похідну неявної функції однієї змінної.
|