МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ
ФАКУЛЬТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Курсовая работа
Модели и методы принятия решений
Выполнила: Токарева О.П.
Заочная форма обучения
Курс V
Специальность 210100
№ зачетной книжки 602654
Проверил: Цыганов Ю.К.
Москва
2008
Задание
на курсовую работу по дисциплине «Модели и методы принятия решений»
Вариант 4
Задача 1.
Решить графоаналитическим методом.
minj (X) = – 3x1 – 2x2
при 2x1 + x2 ³ 2
x1 + x2 £ 3
– x1 + x2 ³ 1
X³ 0
Задача 2.
· Найти экстремумы методом множителей Лагранжа.
· Решение проиллюстрировать графически.
extrj (X) = x12 + x22
при x12 + x22 – 9x2 + 4,25 = 0
Задача 3.
· Решить на основе условий Куна-Таккера.
· Решение проиллюстрироватьграфически.
extrj (X) = x1x2
при 6x1 + 4x2 ³ 12
2x1 + 3x2 £ 24
– 3x1 + 4x2 £ 12
Задача 4.
· Получить выражение расширенной целевой функции (РЦФ) и составить блок-схему алгоритма численного решения задачи методом штрафных функций в сочетании с одним из методов безусловной минимизации.
· Решить задачу средствами MSExcel.
· Решениепроиллюстрировать графически.
maxj (X) = 2x1 + 4x2 – x12 – 2x22
при x1 + 2x2 £ 8
2x1 – x2 £ 12
X³ 0
Задача 1
Решить графоаналитическим методом.
minj (X) = – 3x1 – 2x2
при 2x1 + x2 ³ 2
x1 + x2 £ 3
– x1 + x2 ³ 1
X³ 0
Решение:
Построим линии ограничений:
Примем: 2х1+х2=2 (a)
х1+х2=3 (b)
-х1+х2=1 (c)
экстремум функция минимизация алгоритм
Получаем три прямые a, b и c, которые пересекаются и образуют треугольник соответствующий области которая соответствует первым трем ограничениям, добавляя четвертое ограничение получаем четырехугольник ABCD – допустимая область значений, в которой надо искать минимум (на рисунке эта область не заштрихована).
 
Рис. 1
Примем целевую функцию равной нулю (красная линия d) тогда градиент имеет координаты (-3;-2). Для того, чтобы найти минимум целевой функции будем перемещать график линии d параллельно самой себе в направлении антиградиента до входа ее в область ограничений. Точка в которой область войдет в допустимую область и будет искомой точкой минимума целевой функции. Это точка В(0,33 ; 1,33). При этом целевая функция будет иметь значение:
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение

Темно-синяя линия на рисунке (е).
Задача 2.
· Найти экстремумы методом множителей Лагранжа.
· Решение проиллюстрировать графически.
extrj (X) = x12 + x22
при x12 + x22 – 9x2 + 4,25 = 0
Решение:
Составим функцию Лагранжа
h(X)=x12 + x22 - 9x2 + 4,25=0

Составим систему уравнений из частных производных и приравняем их к нулю:

Решим данную систему уравнений:
Разложим на множители 1 уравнение системы:

Предположим, что , тогда . Подставим во второе уравнение:
2x2 - 2x2 + 9 = 0
9 = 0 не верно, следовательно принимаем, что
, а 
Подставляем в третье уравнение:

Решая это квадратное уравнение получаем, что

Подставляем эти значения во второе уравнение:
1.Подставим первый корень , получаем

2. Подставим второй корень , получаем


- кривая a (окружность)
- кривая b (окружность)
Задача 3
· Решить на основе условий Куна-Таккера.
· Решение проиллюстрироватьграфически.
extrj (X) = x1x2
при 6x1 + 4x2 ³ 12
2x1 + 3x2 £ 24
– 3x1 + 4x2 £ 12
Решение:
Решим задачу на основе условий Куна-Таккера.
Составим функцию Лагранжа:

Составим систему уравнений из частных производных и приравняем их к нулю:

Решим данную систему уравнений:
1.Предположим, что , тогда из уравнения 5 получим:

Предположим, что , , , тогда из уравнения 1 получим:

Пусть , тогда из уравнения 2 получаем:

Это решение не удовлетворяет условиям задачи: (Х≥0)
2.Предположим, что и , тогда из уравнения 1 получим:

Предположим, что , , , выразим из второго уравнения :

Подставим в 3 уравнение:

Получаем: , , 
В этой точке функция равна минимальному значению
3. Предположим, что , и , тогда из второго уравнения получим:

Предположим, что , и , тогда из второго уравнения следует:

Подставим в четвертое уравнение:

Получаем: , , 
В этой точке функция имеет максимальное значение:

X*
N
|
X1* |
X2* |
φ(X*) |
Примечание |
1 |
1 |
1,5 |
1,5 |
Min |
2 |
6 |
4 |
24 |
Max |
Прямая а соответствует графику функции 6х1+4х2=12
Прямая b – графику функции 2х1+3х2=24
Прямая с – графику функции -3х1+4х2=12
Прямая d – графику функции 
Прямая е – графику функции
Задача 4
· Получить выражение расширенной целевой функции (РЦФ) и составить блок-схему алгоритма численного решения задачи методом штрафных функций в сочетании с одним из методов безусловной минимизации.
· Решить задачу средствами MSExcel.
· Решениепроиллюстрировать графически.
maxj (X) = 2x1 + 4x2 – x12 – 2x22
при x1 + 2x2 £ 8
2x1 – x2 £ 12
X³ 0
Решение:
1. Найдем выражение вектор функции системы:
Составим функцию Лагранжа:

Вектор функция системы:

2. Составим матрицу Якоби
Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:
— Разгрузит мастера, специалиста или компанию;
— Позволит гибко управлять расписанием и загрузкой;
— Разошлет оповещения о новых услугах или акциях;
— Позволит принять оплату на карту/кошелек/счет;
— Позволит записываться на групповые и персональные посещения;
— Поможет получить от клиента отзывы о визите к вам;
— Включает в себя сервис чаевых.
Для новых пользователей первый месяц бесплатно.
Зарегистрироваться в сервисе
=
|