Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Теория вероятностей

Название: Теория вероятностей
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 12:09:14 15 марта 2011 Похожие работы
Просмотров: 10773 Комментариев: 21 Оценило: 4 человек Средний балл: 4.3 Оценка: неизвестно     Скачать

Контрольная работа

Теория вероятностей

Задача № 1

событие вероятность задача

Опыт – Брошены 2 игральные кости. Образуют ли полную группу событий следующие наборы: А - на обеих костях шестерки, В - ни на одной кости нет шестерки, С - на одной из костей шестерка, на другой – нет. (Указать, образуют ли они в данном опыте полную группу событий).

Решение:

Определение. Полной группой событий называется совокупность всех возможных результатов опыта.

По определению данный опыт является полной группой событий.

Задача № 2.

На складе имеется 15 кинескопов, причем 10 из них изготовлены Львовским заводом. Найти вероятность того, что среди наудачу взятых 5 ки-нескопов окажется 3 кинескопа Львовского завода.

Решение:

P(A) =

P(A) =

Задача № 3

Имеются изделия четырех сортов, причем число изделий первого сорта – 1, второго сорта - 2, третьего сорта - 3, четвертого сорта - 4. Для контроля наудачу берут 7 изделий. Определить вероятность того, что среди них одно изделие первосортное, одно - второго сорта, два - третьего и три - четвертого сорта.

Решение:

P(A) =

Задача № 4

В мешке смешаны нити, среди которых 30% белых, а остальные красные. Определить вероятность того, что вынутые наудачу две нити будут одного цвета.

Решение:

Вероятность вытягивания белой нити = 30/100 = 0,3,

Вероятность вытягивания красной нити = 70/100 = 0,7,

Вероятность вытягивания двух нитей одного цвета = 0,3*0,7 = 0,21.

Задача № 5

Экспедиция газеты направила газеты в два почтовых отделения. Вероят-ность своевременной доставки газет в каждое из почтовых отделений равна 0,9. Найти вероятность того, что: а) оба почтовых отделения получат газеты вовремя; б) оба почтовых отделения получат газеты с опозданием; в) одно отделение получит газеты вовремя, а второе - с опозданием.

Решение:

а) оба почтовых отделения получат газеты вовремя:

P= 0.9 * 0.9 = 0.81;

б) оба почтовых отделения получат газеты с опозданием:

P= 0.1*0.1 = 0.01;

в) одно отделение получит газеты вовремя, а второе - с опозданием:

P= 0.9*0.1 + 0.1*0.9 = 0.18.

Задача № 6

Вероятности того, что во время работы цифровой электронной машины возникает сбой в арифметическом устройстве, в оперативной памяти, в остальных устройствах, относятся как 3:2:5. Вероятности обнаружения сбоя в арифметическом устройстве, в оперативной памяти и в остальных устройствах соответственно равны 0,8; 0,9; 0,9. Найти вероятность того, что возникший в машине сбой будет обнаружен.

Решение:

Hi – стоп произошел в i-м узле, i = 1…3;

А – стоп обнаружен.

P(H1) = 0,3

P(H2) = 0,2

P(H3) = 0,5

P(AH1) = 0,8

P(AH2) = 0,9

P(AH3) = 0,9

Формула полной вероятности:

P(A) = P(H1) * P(AH1) + P(H2) * P(AH2) + P(H3) * P(AH3) =

0,3*0,8 + 0,2*0,9 + 0,5*0,9 = 0,24+0,18 +0,45 = 0,87.

Задача № 7

Радиолампа может принадлежать к одной из трех партий с вероятностями где . Вероятности того, что лампа проработает заданное число часов, равны для этих партий соответственно 0,1; 0,2; 0,4. Определить вероятность того, что лампа проработает заданное число часов.

Решение:

Выдвинем гипотезы: Н1 - радиолампа из первой партии, Р(Н1) = 0.25; Н2 - радиолампа из второй партии, Р(Н2) = 0.5; Н3 - радиолампа из третьей партии, Р(Н3) = 0.25. Случайное событие А - лампа проработает заданное число часов.

P(A) = P(H1) * P(AH1) + P(H2) * P(AH2) + P(H3) * P(AH3) = 0,25*0,1 + 0,5*0,2 + 0,5*0,4 = 0,025 + 0,1 + 0,2 = 0,325.

Задача № 8

Вероятность изготовления стандартной детали на автомате равна 0,95. Изготовлена партия в 200 деталей. Найти наиболее вероятное число нестандартных деталей в этой партии. Найти вероятность этого количества нестандартных деталей.


Решение:

Вероятность изготовления нестандартной детали на автомате равна 1 – 0,95 = 0,05.

Наивероятнейшее значение k0 числа наступления события A при проведении n повторных независимых испытаний, удовлетворяющих схеме Бернулли, вычисляется по формуле:

или

Проводится 50 повторных независимых испытаний с двумя исходами в каждом. Вероятность появления нестандартной детали в каждом испытании постоянна. Значит, схема Бернулли выполнятся. По формуле имеем:

Так как число деталей может быть только целым, то наиболее вероятное число нестандартных деталей в этой партии равно 10.

Вероятность, что только первые 10 деталей из 200 будут нестандартные:

0,0510*0,95190 = 5,7*10-18

Теперь нужно посчитать общее количество комбинаций, в которых какие-либо 10 деталей из 200 будут нестандартными, а остальные 190 — стандартные. Для этого есть стандартная формула: , где n = 200 (общее количество), a = 10 (количество перебираемых элементов), b = 190 (количество остальных элементов). Итого, возможно комбинаций:

,

В результате получаем вероятность для 10 нестандартных деталей:

22451004309013280*5,7*10-18 =0,128.

Задача № 9

Вероятность попадания в цель из орудия при первом выстреле равна 0,1, при втором выстреле равна 0,4, при третьем - 0,7. Предполагается произвести три выстрела. Найти закон распределения, математическое ожидание и дисперсию числа попаданий в цель. Построить функцию распределения. Определить вероятность того, что число попаданий не менее трех.

Решение.

Случайная величина - число попаданий в мишень при 3-х выстрелах, распределена по биномиальному закону, ее возможные значения 0, 1, 2, 3.

где .

;

;

;

.

амнистия законодательство гуманизм


Ряд распределения случайной величины :


0 1 2 3
0,918 0,08 0,0023 0,00002

; .

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита06:16:53 03 ноября 2021
.
.06:16:51 03 ноября 2021
.
.06:16:50 03 ноября 2021
.
.06:16:48 03 ноября 2021
.
.06:16:47 03 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Контрольная работа: Теория вероятностей

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте