Лабораторная работа №4
Транспортные модели
Цель работы:
научиться находить оптимальное решение задач транспортного типа.
Задание
Вариант 1.
На четырех ткацких станках с объемом рабочего времени 200, 300, 250 и 400 станко-ч за 1 час можно изготовить соответственно 260, 200, 340 и 500 м ткани трех артикулов I, II, III. Составить оптимальную программу загрузки станков, если прибыль (в ден. ед.) от реализации 1 м ткани i-го артикула при ее изготовлении на j-м станке характеризуется элементами матрицы
,
а суммарная потребность в ткани каждого из артикулов равна 200, 100 и 150 тыс. м, учитывая, что ткань Iартикула не может производиться на третьем станке.
Табличная модель:

Контрольные вопросы:
1. Как записывается математическая модель задачи транспортного типа?
Обозначим через xij
объем перевозок от i-го поставщика j-ому потребителю. Математическая модель задачи имеет вид:
1) объем поставок i-го поставщика должен равняться количеству имеющегося у него груза
;
2) объем поставок j-ому потребителю должен быть равен его спросу
;
3) объемы поставок должны выражаться неотрицательными числами
xij
³0;
,
;
4) общая сумма затрат на перевозку груза должна быть минимальной
.
Если суммарный объем отправляемых грузов равен суммарному объему потребностей в этих грузах по пунктам назначения
,
то такая транспортная задача называется закрытой (сбалансированной), в противном случае — открытой (несбалансированной).
Если указанные затраты неизвестны (не указаны) соответствующие значения сij
полагают равными нулю.
модель поставка потребность затрата
2. Как свести открытую транспортную задачу к закрытой?
Если имеет место открытая транспортная задача, ее необходимо свести к закрытой:
1) в случае перепроизводства – ввести фиктивного потребителя с необходимым объемом потребления (элементы матрицы сij
, связывающие фиктивные пункты с реальными, имеют значения, равные затратам на хранение невывезенных грузов);
2) в случае дефицита – ввести фиктивного поставщика с недостающим объемом отправляемых грузов (элементы матрицы сij
, связывающие фиктивные пункты с реальными, имеют значения, равные штрафам за недопоставку продукции).
3. Каковы основные ситуации, описывающие дополнительные ограничения транспортной задачи?
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
При решении практических задач зачастую приходится учитывать ряд дополнительных ограничений.
1. Отдельные поставки от определенных поставщиков некоторым потребителям должны быть исключены (из-за отсутствия необходимых условий хранения, чрезмерной перегрузки коммуникаций и т.д.). Это достигается искусственным значительным завышением затрат на перевозки сij
в клетках, перевозки через которые следует запретить.
2. На предприятии необходимо определить минимальные суммарные затраты на производство и транспортировку продукции. С подобной задачей сталкиваются при решении вопросов, связанных с оптимальным размещением производственных объектов. Здесь может оказаться экономически более выгодным доставлять сырье из более отдаленных пунктов, но зато при меньшей его себестоимости. В таких задачах за критерий оптимальности принимают сумму затрат на производство и транспортировку продукции.
3. Ряд транспортных маршрутов, по которым необходимо доставить грузы, имеют ограничения по пропускной способности. Если, например, по маршруту Ai
Bj
можно провести не более qединиц груза, то Bj
-й столбец матрицы разбивается на два столбца –
и
. В первом столбце спрос принимается равным
, во втором –
. Несмотря на то, что фактические затраты сij
в обоих столбцах одинаковы и равны исходным, в столбце
вместо истинного тарифа сij
ставится искусственно завышенный тариф М (клетка блокируется). Затем задача решается обычным способом.
4. Поставки по определенным маршрутам обязательны и должны войти в оптимальный план независимо от того, выгодно это или нет. В этом случае уменьшают запас груза у поставщиков и спрос потребителей и решают задачу относительно тех поставок, которые необязательны. Полученное решение корректируют с учетом обязательных поставок.
5. Необходимо максимизировать целевую функцию задачи транспортного типа (например, задача об оптимальном распределении оборудования). В этом случае необходимо изменить знак в тарифах на противоположный. В ответе отрицательный знак игнорируется.
Вывод:
я научилась находить оптимальное решение задач транспортного типа.
|