Пусть в двойном интеграле (1)
при обычных предположениях мы желаем перейти к полярным координатам r и f, полагая
x = r cos j, y = r sin j. (2)
Область интегрирования S разобьем на элементарные ячейки DSi с помощью координатных линий r = ri (окружности) и j = ji (лучи) (рис.1).
Введем обозначения:
Drj = rj+1 - rj,
Dji = ji+1 - ji
Так как окружность перпендикулярна (ортогональна) радиусам, то внутренние ячейки DSi с точностью до бесконечно малых высшего порядка малости относительно их площади можно рассматривать как прямоугольники с измерениями rjDji и Drj; поэтому площадь каждой такой ячейки будет равна:
DSi = rj Dji Drj (3)
Что касается ячеек DSij неправильной формы, примыкающих к границе Г области интегрирования S, то эти ячейки не повлияют на значение двойного интеграла и мы их будем игнорировать.
В качестве точки Mij$Sij для простоты выберем вершину ячейки DSij с полярными координатами rj и ji. Тогда декартовые координаты точки Mij равны:
xij = rj cos ji, yij = rj sin ji.
Иследовательно,
f(xij,yij) = f(rj cos ji, rj sin ji) (3')
Двойной интеграл (1) представляет собой предел двумерной интегральной суммы, причем можно показать, что на значение этого предела не влияют добавки к слагаемым
интегральной суммы, являющиеся бесконечно малыми высшего порядка малости, поэтому учитывая формулы (3) и (3'),  получаем:
(4)
где d - максимальный диаметр ячеек DSij и сумма распространена на все ячейки указанного выше вида, целиком содержащиеся в области S. С другой стороны, величины ji и rj суть числа и их можно рассматривать как прямоугольные декартовые координаты некоторых точек плоскости Ojr. Таким образом, сумма (4) является интегральной суммой для функции
f(r cosj, r sinj)r,
соответствующая прямоугольной сетке с линейными элементами Dji и Dri. Следовательно (5)
 Сравнивая формулы (4) и (5), получим окончательно
(6)
Выражение
dS = rdjdr
называется двумерным элементом площади в полярных координатах. Итак, чтобы в двойном интеграле (1) перейти к полярным координатам, достаточно координаты x и y заменить по формулам (2), а вместо элемента площади dS подставить выражение (7).
Для вычисления двойного интеграла (6) его нужно заменить повторным. Пусть область интегрирования S определяется неравенствами Где r1(j), r1(j) - однозначные непрерывные функции на отрезке [a,b]. (рис 2).
Имеем
(8)
Где
F(r,j) = rf(rcosj, rsinj)
Пример 1.
Переходя к полярным координатам j и r, вычислить двойной интеграл Где S - первая четверть круга радиуса R=1, с центром в точке О(0,0) (рис 3).
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
Так как
  то применяя формулу (6),
   получим
Область S определена
Неравенствами
 Поэтому на основании формулы (8) имеем
Пример 2.
В интеграле (9)
перейти к полярным координатам.
Область интегрирования здесь есть треугольник S, ограниченный прямыми y=0, y=x, x=1 (рис 4).
В полярных координатах уравнения
этих прямых записываются
следующим образом: j=0,
j=p/4, rcosj=1 и,
следовательно, область S
определяется неравенствами
 Отсюда на основании формул
(6) и(8), учитывая, что
имеем |