Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Экономико–математические методы в управлении

Название: Экономико–математические методы в управлении
Раздел: Рефераты по экономико-математическому моделированию
Тип: контрольная работа Добавлен 02:15:06 12 декабря 2008 Похожие работы
Просмотров: 83 Комментариев: 22 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ ИММАНУИЛА КАНТА

кафедра экономики

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Экономико – математические методы в управлении»

вариант №30

КАЛИНИНГРАД

2008


Задание

Задание 1.2.

Смесь можно составить из n продуктов Сj (j=1,n). В каждом из продуктов содержится m компонентов. Минимально допустимый объем содержания i-го компонента в смеси выражается величиной bi (i=1,3). Содержание i-го компонента в единице j-го продукта выражается величиной аij . Цена единицы j-го продукта равна сj . Составить смесь, минимальную по стоимости, выбрав для решения данной задачи наиболее рациональный способ.

C1

C2

C3

bi

cj

9

6

7

a1j

7

5

8

70

a2j

8

2

3

40

a3j

9

6

7

50

Задание 2.2.

Найти графоаналитическим методом оптимальное решение задачи нелинейного программирования.

maxZ = 3.6x1 – 0.2x1 2 + 0.8x2 – 0.2x2 2

2x1 + x2 ≥ 10

x1 2 -10x1 + x2 ≤ 75

x2 ≥ 0

Задание 3.1.

После нескольких лет эксплуатации оборудование может оказаться в одном из трех состояний:

1) требуется профилактический ремонт;

2) требуется замена отдельных деталей и узлов;

3) требуется капитальный ремонт.

В зависимости от ситуации руководство предприятия может принять следующие решения:

1) отремонтировать оборудование своими силами, что потребует затрат а ;

2) вызвать специальную бригаду ремонтников, расходы в этом случае составят b ;

3) заменить оборудование новым, реализовав устаревшее по остаточной стоимости.. Совокупные затраты на это мероприятие составят с .

Требуется найти оптимально решение данной проблемы по критерию минимизации затрат с учетом следующих предположений:

а) на основе обобщения опыта эксплуатации аналогичного оборудования определены вероятности наступления соответствующих состояний – q ;

б) имеющийся опыт свидетельствует о равной вероятности наступления соответствующих состояний;

в) о вероятностях наступления соответствующих состояний ничего определенного сказать нельзя.

П1

П2

П3

a

13

9

15

b

20

12

11

c

18

10

14

q

0.3

0.45

0.25

λ = 0.7

Задание 1.2.

Смесь можно составить из n продуктов Сj (j=1,n). В каждом из продуктов содержится m компонентов. Минимально допустимый объем содержания i-го компонента в смеси выражается величиной bi (i=1,3). Содержание i-го компонента в единице j-го продукта выражается величиной аij . Цена единицы j-го продукта равна сj . Составить смесь, минимальную по стоимости, выбрав для решения данной задачи наиболее рациональный способ.

C1

C2

C3

bi

cj

9

6

7

a1j

7

5

8

70

a2j

8

2

3

40

a3j

9

6

7

50

Смесь, минимальная по стоимости:

7x1 + 5x2 + 8x3 ≥ 70

8x1 + 2x2 + 3x3 ≥ 40

9x1 + 6x2 + 7x3 ≥ 50

x1 ≥ 0; x2 ≥ 0; x3 ≥ 0

F = 9x1 + 6x2 + 7x3 → min

После транспонирования матрицы элементов aij , cсимметричная двойственная задача будет иметь вид:

S(y1 ,y2 ,y3 ) = 70y1 + 40y2 + 50y3 → max , при ограничениях:

7y1 + 8y2 + 9y3 ≥ 9

5y1 + 2y2 + 6y3 ≥ 6

8y1 + 3y2 + 7y3 ≥ 7

y1 ≥ 0; y2 ≥ 0; y3 ≥ 0

Для решения двойственной задачи линейного программирования симплекс – методом, приведём систему неравенств к виду системы уравнений:

7y1 + 8y2 + 9y3 + y4 ≥ 9

5y1 + 2y2 + 6y3 + y5 ≥ 6

8y1 + 3y2 + 7y3 + y6 ≥ 7

y1 ≥0;y2 ≥0;y3 ≥0;y1 ≥0;y2 ≥0;y3 ≥0

S(y1 ,y2 ,y3 ) = 70y1 + 40y2 + 50y3 → max

По правилу соответствия переменных, базисным переменным прямой задачи соответствуют свободные переменные двойственной задачи:

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

Первая симплексная таблица:

Базис

Сб

А0

y1

70

y2

40

y3

50

y4

0

y5

0

y6

0

y4

0

9

7

8

9

1

0

0

y5

0

6

5

2

6

0

1

0

y6

0

7

8

3

7

0

0

1

0

-70

-40

-50

0

0

0

Вторая симплексная таблица:

Базис

Сб

А0

y1

70

y2

40

y3

50

y4

0

y5

0

y6

0

y4

0

23/8

0

43/8

23/8

1

0

-7/8

y5

0

13/8

0

1/8

13/8

0

1

-5/8

y1

70

7/8

1

3/8

7/8

0

0

1/8

245/4

0

-55/4

45/4

0

0

35/4

Третья симплексная таблица:

Базис

Сб

А0

y1

70

y2

40

y3

50

y4

0

y5

0

y6

0

Y2

40

23/43

0

1

23/43

8/43

0

-7/43

y5

0

67/43

0

0

67/43

-1/43

1

-26/43

y1

70

29/43

1

0

29/43

-3/43

0

8/43

2950/43

0

0

800/43

110/43

0

280/43

В последней таблице в строке Δ нет отрицательных элементов. В соответствии с критерием оптимальности точка максимума Smax = 2950/43 достигнута при значениях: y1 = 29/43; y2 = 23/43; y3 = 0.

По теореме двойственности: Fmin = Smax = 2950/43.

На основании правила соответствия между переменными, оптимальное решение прямой задачи:

y4 x1 = 110/43 y5 x2 = 0 y6 x3 = 280/43

Ответ: В смесь минимальной стоимости 2950/43 целесообразно включить 110/43 единиц продукта C1 , 280/43 единиц продукта C3 , а продукт C2 не включать.

Задание 2.2.

Найти графоаналитическим методом оптимальное решение задачи нелинейного программирования.

maxZ = 3.6x1 – 0.2x1 2 + 0.8x2 – 0.2x2 2

2x1 + x2 ≥ 10

x1 2 -10x1 + x2 ≤ 75

x2 ≥ 0

В данной задаче имеется нелинейная целевая функция с нелинейной системой ограничений. Графическая схема позволит определить положение точки оптимума.

Сначала необходимо преобразовать формулу целевой функции так, чтобы получить её графическое отображение. Воспользуемся методом выделения полного квадрата двучлена относительно x1 и x2 , разделив левую и правую части формулы на -0.2:

-5Z = x1 2 -18x1 + x2 2 – 4x2

Добавим к левой и правой частям уравнения числа, необходимые для выделения полных квадратов двучлена в правой части выражения:

92 и 22 в сумме составляют 85:

85 – 5Z = (x1 – 9)2 + (x2 – 2)2

В результате получилась формула, позволяющая графически изобразить целевую функцию в виде линии уровня на плоскости X1 OX2 . Данные линии уровня представляют собой окружности с общим центром в точке O (9;2). Данная точка является точкой абсолютного экстремума целевой функции.

Для определения характера экстремума нужно провести анализ целевой функции на выпуклость/вогнутость. Для этого необходимо определить вторые частные производные и составить из них матрицу:


Z x1x1 Z x1x2 = -0.4 0

Z x2x1 Z x2x2 0 -0.4

Определим знаки главных миноров данной матрицы.

Главный минор первого порядка -0.4 < 0.

Главный минор второго порядка 0.16 > 0.

Т.к. знаки миноров чередуются, функция Z - строго вогнута. Экстремум вогнутых функций – max, следовательно в точке О у целевой функции находится абсолютный максимум.

Для построения области допустимых значений преобразуем второе неравенство системы ограничений:

x1 2 – 10x1 + x2 ≤ 75

x1 2 – 10x1 + 25 + x2 ≤ 100

(x1 – 5)2 + x2 ≤ 100

(x1 – 5)2 ≤ 100 – x2

Уравнение (x1 – 5)2 = 100 – x2 выразим через переменные x1 * и x2 * :

x1 * = x1 – 5

x2 * = 100 – x2

Уравнение примет вид: x1 *2 = x2 * .

В системе координат X1 * O* X2 * данное уравнение является каноническим уравнением параболы.



На рисунке область допустимых значений – ограниченная часть плоскости ABCD. Из полученного графика видно, что точка абсолютного максимума Z лежит внутри ОДР. Следовательно, целевая функция принимает максимальное значение в этой точке:

max Z = Z(O) = Z(9;2) = 17

Задание 3.1

После нескольких лет эксплуатации оборудование может оказаться в одном из трех состояний:

1) требуется профилактический ремонт;

2) требуется замена отдельных деталей и узлов;

3) требуется капитальный ремонт.

В зависимости от ситуации руководство предприятия может принять следующие решения:

1) отремонтировать оборудование своими силами, что потребует затрат а ;

2) вызвать специальную бригаду ремонтников, расходы в этом случае составят b ;

3) заменить оборудование новым, реализовав устаревшее по остаточной стоимости.. Совокупные затраты на это мероприятие составят с .

Требуется найти оптимально решение данной проблемы по критерию минимизации затрат с учетом следующих предположений:

а) на основе обобщения опыта эксплуатации аналогичного оборудования определены вероятности наступления соответствующих состояний – q ;

б) имеющийся опыт свидетельствует о равной вероятности наступления соответствующих состояний;

в) о вероятностях наступления соответствующих состояний ничего определенного сказать нельзя.

П1

П2

П3

a

13

9

15

b

20

12

11

c

18

10

14

q

0.3

0.45

0.25

λ = 0.7

Составим платёжную матрицу, в которой Пj – состояния оборудования, Аi – альтернативы принятия решений:

П1

П2

П3

А1

-13

-9

-15

А2

-20

-12

-11

А3

-18

-10

-14

Для принятия оптимального решения в случае а). воспользуемся критерием Байеса; в случае б). критерием Лапласа; в случае в). критериями Вальда, Сэвиджа, Гурвица.

а). на основе обобщения опыта эксплуатации аналогичного оборудования определены вероятности наступления соответствующих состояний: q1 = 0.3; q 2 = 0.45; q 3 = 0.25

Критерий Байеса.

Для каждой альтернативы найдём средний выигрыш: ` ai = ∑ aij × qj

`a1 = -11.7 `a2 = -14.15 `a3 = -13.4

П1

П2

П3

`ai

А1

-13

-9

-15

-11.7

А2

-20

-12

-11

-14.15

А3

-18

-10

-14

-13.4

qj

0.3

0.45

0.25

Из средних выигрышей выбираем максимальный: max ai = ` a 1 = -11.7 – первая альтернатива оптимальна в случае известных вероятностей наступления событий при выборе решения по критерию Байеса.

б). имеющийся опыт свидетельствует о равной вероятности наступления соответствующих состояний;

Критерий Лапласа.

Для каждой альтернативы найдём средний выигрыш: ` ai = 1/3∑ aij

`a1 = -12.3 `a2 = -14.3 `a3 = -14

П1

П2

П3

`ai

А1

-13

-9

-15

-12.3

А2

-20

-12

-11

-14.3

А3

-18

-10

-14

-14

Из средних выигрышей выбираем максимальный: max ai = ` a 1 = -12.3 – первая альтернатива оптимальна в случае равной вероятности наступления событий при выборе решения по критерию Лапласа.

в). о вероятностях наступления соответствующих состояний ничего определенного сказать нельзя.

Критерий Вальда.

Для каждой альтернативы определим наихудший исход. di – минимальный элемент строки. Из наихудших исходов выбираем наилучший, т.е. максимальный di .

П1

П2

П3

di

А1

-13

-9

-15

-15

А2

-20

-12

-11

-20

А3

-18

-10

-14

-18

max di = d 1 = -15 – первая альтернатива оптимальна по критерию Вальда.

Критерий Сэвиджа.

Для каждого столбца находим максимальный элемент βj .

П1

П2

П3

А1

-13

-9

-15

А2

-20

-12

-11

А3

-18

-10

-14

βj

-13

-9

-11

Построим матрицу рисков, элементы которой: rij = βj - aij

max ri

0

0

4

4

7

3

0

7

5

1

3

5

В матрице рисков в каждой строке найдём максимальный риск, и из них выберем минимальный: min r = r 1 = 4 – первая альтернатива оптимальна по критерию Сэвиджа.

Критерий Гурвица.

Для каждой строки находим минимальный di и максимальный βj .

П1

П2

П3

di

βj

χi

А1

-13

-9

-15

-15

-9

-13.2

А2

-20

-12

-11

-20

-11

-17.3

А3

-18

-10

-14

-18

-10

-15.6

χ i = λ × di + (1 – λ) × βj λ = 0.7

Максимальный из элементов последнего столбца: max χ i = χ1 = -13.2 – первая альтернатива оптимальна по критерию Гурвица.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита23:34:09 02 ноября 2021
.
.23:34:07 02 ноября 2021
.
.23:34:06 02 ноября 2021
.
.23:34:05 02 ноября 2021
.
.23:34:05 02 ноября 2021

Смотреть все комментарии (22)
Работы, похожие на Контрольная работа: Экономико–математические методы в управлении

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте