Введение:
Одна из трудностей, на которую наталкивается традиционная теория Большого взрыва, - необходимость объяснить, откуда берётся колоссальное количество энергии, требующееся для рождения частиц. Не так давно внимание учёных привлекла видоизменённая теория Большого взрыва, которая предлагает ответ на этот вопрос. Она носит название теории раздувания и была предложена в 1980 году сотрудником Массачусетского технологического института Аланом Гутом. Основное отличие теории раздувания от традиционной теории Большого взрыва заключается в описании периода с 10-35
до 10-32
с. По теории Гута примерно через 10-35
с. Вселенная переходит в состояние “псевдовакуума”, при котором её энергия исключительно велика. Из-за этого происходит чрезвычайно быстрое расширение, гораздо более быстрое, чем по теории Большого взрыва (оно называется раздуванием). Через 10-35
с. после образования Вселенная не содержала ничего кроме чёрных мини-дыр и “обрывков” пространства, поэтому при резком раздувании образовалась на одна вселенная, а множество, причём некоторые, возможно, были вложены друг в друга. Каждый из участков пены превратился в отдельную вселенную, и мы живем в одной их них. Отсюда следует, что может существовать много других вселенных, недоступных для нашего наблюдения.
Хотя в этой теории удаётся обойти ряд трудностей традиционной теории Большого взрыва, она и сама не свободна то недостатков. Например, трудно объяснить, почему, начавшись, раздувание в конце концов прекращается. От этого недостатка удалось освободиться в новом варианте теории раздувания, появившемся в 1981 году, но нём тоже есть свои трудности.
Сценарий “раздувающейся Вселенной”.
Строго говоря, существует несколько таких сценариев. Первые из них появились в начале 80-х годов (1980 г. – американский физик А. Гус; 1981 г. – советский физик А. Д. Линде и чуть позднее – американские физики П. Стейнхардт и А. Альбрехт; 1983 г. – новый сценарий, получивший название “хаотического раздувания”, разработал А. Д. Линде). Разработкой гипотезы “раздувающейся Вселенной” учёные продолжают активно заниматься и сейчас в нашей стране и за рубежом.
Сценарий “раздувающейся вселенной не отменяет такие важнейшие результаты, полученные релятивистской космологией, как фридмановская теория расширения Метагалактики, теория “горячей Вселенной”, и т. д. Модели “раздувающейся Вселенной” позволяют приблизится к началу расширения и исследовать ранее вообще не рассматривавшиеся процессы, которые происходили в первую секунду, а точнее, в первые мгновения истории Метагалактики. Предполагается, что в истории очень ранней нашей Вселенной огромную роль играл физический вакуум, который, как мы знаем, обладает антигравитационными свойствами, т. е. способен вместо обычного гравитационного притяжения создавать мощное гравитационное отталкивание.
Сценарий “раздувающейся Вселенной” не отменяет Большой взрыв, в начале которого плотность материи превосходила 1096
кг/м3
, а свойства пространства и времени пока нам неведомые. Через 10-45
с после начала расширения плотность материи стала 1096
кг/м3
(это почти на восемьдесят порядков больше плотности атомного ядра и неизмеримо больше плотности физического вакуума). До тех пор пока плотность физического вакуума (1077
кг/м3
) оставалась много меньше плотности реальных горячих частиц и античастиц, антигравитационные свойства такого “ложного вакуума” не оказывали значительного влияния на характер расширения. Но уже через 10-34
с после начала расширения температура была порядка 1027
K, а плотность обычной материи стал такой же, как и плотность “ложного вакуума”. В этих условиях гравитационное отталкивание превосходит силы притяжения. Под действием отрицательного давления физического вакуума наша Вселенная начала ускоренно расширяться. За каждые 10-34
с расстояние между произвольно выбранными элементами среды удваивалось или стало экспотенциально расти (график такого процесса экспонента – кривая показательной функции с основанием e). Таким образом, фридмановскому расширению, при котором
R(t) ~ t1/2
,
предшествовала стадия эволюции Вселенной при которой
R(t) ~ (H0
1
)-1
eHt
,
где H0
1
постоянная Хаббла, которая тогда резко отличалась от современного значения.
“Раздувание” продолжалось ничтожное (по нашим представлениям) время – порядка 10-32
с, но этого хватило для того, чтобы размер рождающейся Метагалактики чудовищно увеличился: по одним моделям в 1050
раз, а по другим – в 101 000 000
раз. Без “раздувания” размеры увеличились бы лишь в 10 раз.
В принципе не исключено, что в истории нашей Вселенной была не одна, а несколько “инфляционных” стадий, но так или иначе “раздувание” было явлением кратковременным. По мере расширения Вселенной быстро уменьшались плотность и температура обычного вещества. По мере расширения Вселенной быстро уменьшались плотность и температура обычного вещества. Наступили переохлаждение и фазовый переход среды из состояния “ложного вакуума” в состояние истинного вакуума, плотность которого мало отличается от нуля. Этот переход сопровождается выделением очень большой энергии, прежде всего скованной в “ложном вакууме”. Освободившаяся энергия расходовалась на рождение (из физического вакуума) множества реальных частиц и античастиц. Скорости движения и энергии новорождённых частиц были очень велики, а потому Вселенная вновь разогрелась до температуры порядка 1027
K, а “инфляционная” стадия эволюции Метагалактики сменилась уже известной нам стадией “горячей Вселенной”. Исходный объём, с которого началось “инфляционное” расширение пространства, был не менее 10-33
см3
. Вот этот объём мгновенно вырос до объёма, многократно превосходящего нынешние размеры Метагалактики.
Легко убедится в том, что размеры Метагалактики увеличивались со сверхсветовой скоростью. Это явление не противоречит специальной теории относительности, которая запрещает распространение сигналов со сверхсветовыми скоростями, но не ограничивает скорость роста размеров какой-либо системы. Также, впечатляет тот факт, что из ничтожной массы (10-5
г) которая содержалась в крошечном объёме пространства до начала “инфляционной” стадии, возникла Метагалактика с массой порядка 1050
т. Это произошло в результате работы совершённой гравитационными силами.
|