Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Лабораторная работа: Критерии устойчивости систем

Название: Критерии устойчивости систем
Раздел: Промышленность, производство
Тип: лабораторная работа Добавлен 20:39:20 15 декабря 2010 Похожие работы
Просмотров: 729 Комментариев: 19 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

НТИ НИЯУ МИФИ

Кафедра автоматизации управления

ОТЧЕТ

по лабораторной работе №2

по курсу: «Основы теории управления»

на тему: «КРИТЕРИИ УСТОЙЧИВОСТИ СИСТЕМ»

Выполнил: ст. гр. АУ-47Д

Андреев В.А.

Руководитель:

Мухаматшин И.А.

“ ___ ” декабря 2010 г.

Новоуральск 2010


Задание

Определить устойчивость системы по алгебраическим критериям устойчивости (критерий Рауса, критерий Гурвица) и по частотным критериям (критерий Михайлова, критерий Найквиста). Структурная схема представлена на рис 1.

Рис 1

Таблица 1 – Исходные данные

10 10 9 91

Значение постоянных времени (для всех вариантов):

Составление передаточной функции для замкнутой системы

Если представить передаточную функцию в виде

,

то операторный коэффициент передачи:

характеристический полином:

Получили полином второго порядка, тогда его коэффициенты определятся:

Устойчивость системы по критерию Рауса


Этот критерий формулируется в табличной форме. Таблица Рауса состоит из – коэффициентов, связанных с коэффициентами полинома , где – номер столбца, – номер строки (их число равно ):

где

, при

Формулировка критерия Рауса

САУ устойчива, если коэффициенты первого столбца таблицы при положительны: , , , …, .

Для многочлена второго порядка коэффициенты:

Поскольку все коэффициенты 1-го столбца положительны, то по критерию Рауса система устойчива.


Устойчивость системы по критерию Гурвица

Суть критерия устойчивости Гурвица: для устойчивости замкнутой САУ необходимо и достаточно, чтобы определитель Гурвица и все его диагональные миноры были положительны при .

Для системы второго порядка (n=2) характеристическое уравнение имеет вид:

Матрица Гурвица примет вид:

Ее диагональные миноры:

получились положительными

Для устойчивости системы необходимо, чтобы все n диагональных миноров были положительны .

Поскольку все диагональные миноры матрицы Гурвица положительны (Δ1 > 0, Δ2 > 0) при a0 > 0, то система устойчива.


Устойчивость системы по критерию Михайлова

Формулировка критерия Михайлова:

Замкнутая система автоматического управления устойчива, если характеристическая кривая (годограф Михайлова), начинаясь на положительной вещественной оси в точке an, при изменении частоты 0£w£¥ последовательно проходит число квадрантов равное степени характеристического полинома.

Задан характеристический полином системы:

Построим годограф Михайлова в Маткад при изменении частоты от 0 до 10000 с-1 (рис 2)

Рис 2

Годограф, изображенный на рис 2 начинается на действительной положительной оси и проходит последовательно две четверти (равно степени полинома D(p)), (очень незначительно выступает на второй квадрант, возможно из-за того, что один из коэффициентов полинома очень мал a0 = 0.0000081, близок к нулю). Т.е наблюдаемая устойчивость на грани.

Поскольку годограф пересекает последовательно 2 квадранта для полинома второго порядка, то по критерию Михайлова система устойчива.

Устойчивость системы по критерию Найквиста

Для систем, устойчивых в разомкнутом состоянии:

Условие устойчивости замкнутой системы сводится к требованию, чтобы АФЧХ разомкнутой системы не охватывала точку (-1,j0).

Для систем, неустойчивых в разомкнутом состоянии, критерий Найквиста имеет такую формулировку:

Для устойчивости системы в замкнутом состоянии АФЧХ разомкнутой системы должна охватывать точку (-1,j0). При этом число пересечений ею отрицательной действительной полуоси левее точки (-1,j0) сверху вниз должно быть на k/2 больше числа пересечений в обратном направлении, где k – число полюсов передаточной функции W(p) разомкнутой системы с положительной действительной частью.

Передаточная функция разомкнутой системы:

тогда АФЧХ:

Построим АФЧХ разомкнутой системы (рис 3)

Рис 3

Из рис 3: годограф не охватывает точку (-1,j0),следовательно, система устойчива.


Вывод

В ходе работы была проведена оценка устойчивости системы по различным алгебраическим и частотным критериям. По всем критериям система оказалась устойчивой. Более точными оказались алгебраические критерии устойчивости, поскольку мы имеем аналитическое описание системы: Рауса и Гурвица, они просты для систем невысокого порядка (n<3), для системы более высокого порядка становится затруднительным применение данных критериев, потому что растет число условий, по которым можно говорить об устойчивости системы. По частотным критериям устойчивости устойчивость САУ определяется на использовании принципа аргумента, применимы для нелинейных САУ, менее точны по сравнению с алгебраическими, потому что устойчивость таких систем определяется по виду годографа в тех или иных критериях устойчивости (Найквиста, Михайлова).

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита22:15:19 02 ноября 2021
.
.22:15:18 02 ноября 2021
.
.22:15:17 02 ноября 2021
.
.22:15:16 02 ноября 2021
.
.22:15:16 02 ноября 2021

Смотреть все комментарии (19)
Работы, похожие на Лабораторная работа: Критерии устойчивости систем

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте