Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Акриламид и полиакриламид: получение и свойства

Название: Акриламид и полиакриламид: получение и свойства
Раздел: Рефераты по химии
Тип: курсовая работа Добавлен 15:01:25 13 июня 2010 Похожие работы
Просмотров: 3048 Комментариев: 19 Оценило: 3 человек Средний балл: 4.7 Оценка: неизвестно     Скачать

Курсовая работа по теме:

Акриламид и полиакриламид, получение и свойства


1. Акриламид

1.1 Физические свойства

Акриламид (АА) – амид акриловой кислоты. Номенклатурное название - 2-пропенамид. Представляет собой бесцветные кристаллы.

Формула: CH2 =CHC(O)NH2 ,

Молекулярная масса - 71,08.

Температура плавления - 84,5°С, температура кипения 215°С, 125°С/25 мм рт. ст., 87 °С/2 мм рт. ст..

Плотность d30 4 1,122. Давление пара 0,93 Па (25°С), 9,3 Па (50°С).

Растворимость представлена в таблице 1 [1].

Таблица 1 – Растворимость акриламида

Растворитель Растворимость (г на 100 г растворителя)
Вода 211,5
Метанол 155,0
Этанол 86,2
Ацетон 63,1
Этилацетат 12,6
Хлороформ 2,66
Бензол 0,346
Гептан 0,0068

1.2 Химические свойства

Группа CONH2 вступает в реакции, характерные для алифатических амидов карбоновых кислот. Акриламид слабо амфотерен: с трет-бутилатом Na образует Na-соль, с H2 SO4 -сульфат:

CH2 =CHC(O)NH2 + H2 SO4 = (CH2 =CHC(O)NH3 )2 SO4


Количественно титруется в растворе уксусного ангидрида 0,1 н. раствором НС1О4 в ледяной уксусной кислоте. При взаимодействии с водным раствором формальдегида в присутствии оснований (рН 7-9) превращается в неустойчивый N-метилолакриламид:

CH2 =CHC(O)NH2 + СН2 О = СН2 =CHC(O)NHCH2 OH

В присутствии кислотных катализаторов и в избытке акриламида - в N,N'-метилен-бис-акриламид (CH2 =CHCONH)2 CH2 .

По двойной связи акриламид легко присоединяет первичные и вторичные алифатические амины, NH3 , спирты, меркаптаны, H2 S, кетоны и др.

С диеновыми углеводородами вступает в диеновый синтез. Электрохимической гидродимеризацией превращается в адиподиамид. Полимеризуется с образованием полиакриламида и сополимеризуется с акриловыми мономерами, стиролом, винилиденхлоридом и др [1].

В присутствии сильных оснований в апротонных растворителях образует поли-β-аланин СН2 =CHCONH—[CH2 CH2 CONH]n —CH2 CH2 CONH2 .

1.3 Получение и определение акриламида

В промышленности акриламид получают:

1. Гидролизом акрилонитрила 84,5%-ной H2 SO4 при 80-100°С в присутствии ингибиторов полимеризации (соли Си или Fe, сера, фенотиазин и др.). Образовавшуюся сернокислую соль акриламида нейтрализуют стехиометрическим количеством NH3 или известковым молоком.

2. Каталитическим гидролизом акрилонитрила при 80-120 °С в присутствии медных катализаторов (медь Ренея, Cu/Cr2 O3 , Cu/Al2 O3 -SiO2 или др.). Степень превращения акрилонитрила 98,5%. Основная примесь – β-гидроксипропионитрил (до 0,1%). Этот способ производства предпочтительнее, чем сернокислотный, в экономическом и экологическом отношении.

В лабораторной практике акриламид можно получать из акрилоилхлорида или акрилового ангидрида и NH3 .

Акриламид определяют бромид-броматометрически, в водных растворах - рефрактометрически, малые количества - методами полярографии или газожидкостной хроматографии. Примеси акриловой кислоты и ее солей обнаруживают алкалиметрически [1].

1.4 Применение акриламида и производных

Акриламид - мономер в производстве полиакриламида и сополимеров с акриловой кислотой, кислыми эфирами малеиновой кислоты и др., клеев.

N-Метилолакриламид, используемый в виде 60%-ного водного раствора, - мономер для получения сополимеров с акриламидом, винилацетатом, акрилонитрилом и акриловой кислотой.

N, N' - Метилен-бис-акриламид - сшивающий агент и модификатор аминоальдегидных смол [1].

1.5 Токсичность акриламида

Акриламид и его производные действуют преимущественно на нервную систему при любом пути поступления в организм (нарушается координация движений, возникают атаксия, судороги, параличи). Поражаются также печень и почки. Легко проникая через неповрежденную кожу, вызывают развитие неврологических симптомов. Наиболее токсичен акриламид [2].

Острое отравление. Введение через рот смертельных доз акриламида белым крысам вызывало судороги. Для крыс, морских свинок и кроликов ЛД50 = 150÷180 мг/кг. Изменения на энцефалограммах свидетельствовали о диффузности поражения различных отделов нервной системы. Повторное введение доз, не вызывающих судорог, приводит к развитию атаксии и дрожания тела по типу мозжечковой асинергии.

Хроническое отравление. Животные. На кумулятивные свойства акриламида указывает нарастание симптомов при длительном поступлении яда. При добавлении к пище крыс в течение 1-6 месяцев 0,02—0,04% или при поступлении акриламида с питьевой водой в дозе 10—20 мг/кг в течение 29—192 дней поражались в основном периферические нервы, имели место дегенеративные изменения осевых цилиндров и миелиновых оболочек. Страдали преимущественно дистальные отделы нервов с наибольшим диаметром.

Человек. Описано несколько случаев производственных отравлений при контакте с акриламидом в течение 4-60 недель. В клинической картине отравления превалировали симптомы нарушения функций среднего мозга и периферической нервной системы. Наблюдались мышечная слабость, потеря чувствительности, арефлексия, потеря равновесия. При прекращении контакта с акриламидом полное выздоровление наступало через 2-12 месяцев (авторы ставят под сомнение возможность полного восстановления при тяжелых случаях отравления). Нарушение функции периферической нервной системы у 15 рабочих производства акриламида со стажем работы от 2 месяцев до 8 лет. При большом стаже имели место атактическая походка, изменения энцефалограмм.

Действие на кожу. У кроликов после 10 нанесений 10% водного раствора акриламида развивались некоторые неврологические симптомы, без раздражающего действия на кожу. Однако у человека 1% водный раствор акриламида вызывал раздражение кожи [2].

Предельно допустимая концентрация. В РФ не установлена. В США принята 0,3 мг/м3 [2].

Индивидуальная защита. Меры предупреждения. Защита дыхательных путей — использование респираторов типа «Лепесток» и «Астра-2» при наличии пыли. Тщательная защита кожи. Соблюдение мер личной гигиены. Периодические медицинские осмотры рабочих для возможно более раннего выявления неврологических симптомов [2].

Аналогично действуют N,Ν-диметилакриламид, Ν,Ν-диэтилакриламид, N-изопропилакриламид, N-гидроксиметиленакриламид и метакриламид. Но они менее токсичны, специфические неврологические симптомы развиваются при бóльших дозах. Для крыс ЛД50 N -изопропилакриламида 350 мг/кг (Barnes). Раздражают кожу и проникают через нее [2].


2. Полиакриламид

В настоящее время широко применяются водорастворимые полимеры на основе акриламида (АА) [3]

которые объединены общим названием "полиакриламиды".

В эту группу входят полиакриламид (ПАА) - неионогенный полимер

его анионные производные, например, частично гидролизованный ПАА

и катионные производные, например поливиниламин

а также сополимеры АА с различными ионогенными и неионогенными мономерами. Полимеры и сополимеры с разной молекулярной массой (ММ), молекулярно-массовым распределением, химическим составом и распределением звеньев исходных мономеров вдоль цепи, линейные, разветвленные и сшитые имеют разное функциональное назначение и различные области применения.

Впервые АА был получен в 1893 году, однако освоение промышленного производства началось только в начале 50-х годов нашего столетия, что сдерживалось плохой сырьевой базой. Способность АА полимеризоваться в присутствии радикальных инициаторов и подходящие для многих целей свойства обеспечили быстрое налаживание и расширение производства полимеров. Первоначально эти полимеры применяли в качестве флокулянтов для осаждения и фильтрации шлама фосфоритов в технологии обработки урановых руд и прочностных добавок для бумаги, а в дальнейшем стали широко использовать в различных отраслях промышленности, сельском хозяйстве и медицине в качестве флокулянтов, загустителей, адгезивов, смазок, структурообразователей, пленкообразователей. Несмотря на важные мирные профессии полимеров АА, их использование в оборонной промышленности значительно ограничило доступность научной информации, поэтому до начала 70-х годов в литературе отсутствовали сведения о технологии производства полимеров. В последние годы наряду с улучшением сырьевой базы создана научная основа для направленной разработки полимеров с заданными свойствами, разработаны перспективные методы синтеза полимеров - полимеризация и сополимеризация АА в концентрированных водных растворах и дисперсиях, получили развитие методы химической модификации полимеров. В настоящее время полимеры АА производят крупные фирмы США, Японии и развитых стран Европы. Они являются основными поставщиками полимеров на мировой рынок, а в России, Китае и ЮАР полимеры производят для внутреннего потребления. Производство полимеров АА продолжает неуклонно возрастать и к концу века достигнет 400 тыс. т в год. Однако темпы роста производства не удовлетворяют потребностей, которые ежегодно возрастают на 8-10%. Поэтому актуальны разработка новых и совершенствование существующих перспективных методов синтеза ПАА, его производных и сополимеров АА [4].

2.1 Применение полимеров акриламида

Полимеры АА обладают уникальным комплексом полезных свойств и широко используются в различных областях техники и технологии. Различные области применения и назначение полимеров показаны в табл. 2 [3].

Приведенные данные свидетельствуют о многофункциональном назначении и различных возможностях применения полимеров АА, которые не ограничиваются приведенными примерами.

Эффективность применения полимеров АА определяется их характеристиками.

Таблица 2 - Области применения и назначение полимеров АА [3]

Область применения Назначение
Обработка воды Флокулянты для очистки природных и промышленных сточных вод, переработки пищевых продуктов; обезвоживающие агенты для осадков;
Обработка бумаги Регуляторы прочности бумаги в сухом и влажном состоянии, добавки для улучшения качества и печатных свойств бумаги
Добыча и обработка полезных ископаемых Флокулянты хвостов флотации руд, при обогащении и регенерации полезных ископаемых (уран, золото, титан, каменный уголь, алюминий, железо). Уменьшение запыленности в угольных шахтах, при бурении, на асбестовых заводах
Добыча нефти Стабилизаторы, регуляторы фильтруемости и реологических свойств буровых растворов. Структурообразователи почв для укрепления стенок скважин при вторичной добыче нефти и гидравлическом разрыве пластов
Сельское хозяйство Структурообразователи почв. Пленкообразователи для семян, удобрений, инсектицидов, гербицидов и фунгицидов
Медицина Суперабсорбенты для тампонов, памперсов, салфеток, пеленок, бандажей для ран. Пленкообразователи для фармацевтических препаратов пролонгированного действия. Гидрогели для контактных линз
Область применения Назначение
Строительство Структурообразователи грунтов в дорожном строительстве. Обезвоживающие агенты для абсоцемента. Регуляторы сватывания цемента. Прочностные добавки для строительных плит. Диспергаторы пигментов, регуляторы вязкости и защитные коллоиды для водно-эмульсионных красок
Другие области Агенты, снижающие гидравлическое сопротивление для ускорения движения морских судов, для перекачки нефтепродуктов, суспензий и эмульсий, для увеличения дальнобойности водных струй в пожарном деле. Шлихтующие агенты для хлопчатобумажных, шерстяных, вискозных и ацетатных нитей. Аппертирующие агенты для тканей. Клеи для бумаги и текстиля

Основное применение неионных полимеров - очистка природных и сточных вод и обезвоживание осадков в целлюлозно-бумажной промышленности, анионных полимеров - водообработка, флокуляция хвостов флотации руд, обогащение и регенерация полезных ископаемых и нефти, обработка бумаги и шлихтование текстильных материалов (создание на поверхности нити эластичной и прочной пленки с высокой водопоглощающей способностью, которая закрепляет выступающие волокна на стволе нити и улучшает процесс ткачества и свойства нити), катионных полимеров - обработка бумаги и флокуляция биологических клеток. Высокомолекулярные полимеры (ММ = (2-18) ·106 ), эффективность которых возрастает с увеличением ММ, используют как флокулянты, загустители, структуро- и пленкообразователи и для смазки. Низкомолекулярные полимеры (MM = (0,005-0,4) · 106 ) используют как разжижители нефти, диспергаторы и стабилизаторы буровых растворов, а также как добавки для герметизации, снижения потерь цементного раствора и предотвращения образования накипи. Прививку АА на различные полимеры применяют для улучшения свойств полимеров (например, при прививке на полиакрилонитрил повышаются гидрофильность, окрашиваемость и адгезия).

Рассмотрим основные области применения полимеров АА. Наиболее широко используются водорастворимые полимеры АА в качестве флокулянтов для эффективной очистки природных и промышленных сточных вод, улавливания и выделения ионов тяжелых металлов и токсичных веществ, что способствует решению экологической проблемы защиты окружающей среды, и в частности природных водоемов от загрязнений. Действие флокулянтов основано на агломерации частиц в крупные флокулы, что способствует их быстрому осаждению. Флокуляция происходит вследствие адсорбции макромолекул в результате их физического или химического связывания с поверхностью частиц по механизму мостикообразования или нейтрализации зарядов. Эффективному связыванию осаждаемых частиц способствует увеличение размеров макромолекул в водной среде в результате увеличения ММ и содержания ионогенных звеньев в цепи (например, при флокуляции различных дисперсных систем наилучшие результаты получены при 20-30%-ном содержании карбоксилатных групп в гидролизованном ПАА). Малые добавки (0,02%) частично гидролизованного ПАА с ММ = 1,2 · 107 в воду водохранилищ, ирригационных водоемов и плавательных бассейнов используют для снижения (на 14%) скорости испарения воды. По прогнозам специалистов, в будущем в связи с ухудшением экологической обстановки ожидается наибольший рост потребления полимеров для очистки природных и промышленных сточных вод. Успешно применяются полимеры АА в качестве флокулянтов и медицинской, микробиологической и пищевой (например, для очистки сахарных сиропов и фруктовых соков) промышленности.

Одна из традиционных областей применения полимеров АА - целлюлозно-бумажная промышленность. Добавки ПАА в качестве связующего в бумажную массу способствуют удержанию наполнителя и пигментов в бумажной массе во влажном и сухом состояниях, улучшают структуру поверхности бумажного листа и свойства бумаги. Например, добавка частично гидролизованного ПАА со степенью гидролиза 2-23% при рН 6-9 увеличивает на 30-35% удержание каолина в бумажной массе. Прочность бумаги во влажном состоянии может увеличиваться в десятки раз за счет образования комплексов между аминированным ПАА и ионами хрома, кобальта и меди, вводимыми в бумажную массу. Кроме того, добавки аминированного ПАА способствуют извлечению ионов многовалентных металлов из воды и снижают содержание в ней взвешенных веществ, что улучшает качество оборотной и сточных вод [5].

Полимеры АА находят применение в качестве селективных флокулянтов при добыче, обогащении руд и регенерации ценных полезных ископаемых (уран, золото, титан, алюминий, железо, каменный уголь). Введение малых добавок ПАА в воду (0,001%) в два раза повышает эффективность резания мрамора струей воды под давлением. Разрушающий эффект струи подобен действию на образец смеси песка и воды, но не разрушает трубы и насосы установки. Обработка водными растворами частично гидролизованного ПАА пылевидных частиц успешно используется для снижения запыленности в угольных шахтах, на асбестовых заводах и при бурении.

В настоящее время в связи с обострением энергетического кризиса большое значение приобретают полимеры АА в нефтедобывающей промышленности. В этой области полимеры применяются для различных целей: при бурении в качестве стабилизаторов, регуляторов фильтруемости и реологических свойств буровых растворов, ускорителей проходки пород и структурообразователей почв для укрепления стенок скважин; при вторичной добыче нефти добавки ПАА уменьшают подвижность закачиваемой в пласт воды, что способствует лучшему вытеснению нефти из пористых пород. Анионные и катионные производные ПАА используют для создания защитных экранов для водоносного слоя и уменьшения содержания воды в добываемой нефти. Водные растворы частично гидролизованного ПАА с ММ = (3,5-8) · 106 и степенью гидролиза 1-30% для обработки 400 скважин в течение шести лет позволили получить прибыль по отношению к вложениям 2400% (от 88% обработанных скважин). Применение при вторичной добыче нефти 1 т реагента "Темпоскрина", полученного на основе ПАА, позволяет дополнительно извлечь из скважины от 1200 до 1500 т нефти.

В последние годы широкое применение получили суперабсорбенты - водорастворимые материалы на основе полимеров и сополимеров АА. Для этих целей используют полимеры с высокой гидрофильностью, например сополимеры АА с акриловой кислотой, макромолекулы которых редко сшиты между собой поперечными химическими связями. Их наносят на пористую бумагу или ткань и сушат. Такие полимеры нерастворимы в водных растворах, но сильно в них набухают, поглощая и удерживая количество жидкости, в 500-1000 раз превышающее сухую массу полимера, образуя мягкие гидрогели, проницаемые для молекул жидкостей. Суперабсорбенты используют в промышленности, например для удаления влаги из природного газа на газоразделительных установках, а также в медицине и быту, например для изготовления бандажей, для ран, салфеток, пеленок, тампонов, памперсов.

Перспективной областью применения полимеров и сополимеров АА является использование их в качестве агентов, снижающих гидравлическое сопротивление жидкостей при движении в турбулентном режиме (эффект Томса). Турбулентное (от лат. turbulentus - бурный, беспорядочный) течение возникает в пограничных слоях около движущихся в жидкости твердых тел, трубах и струях. При введении малых добавок (10- 4%) высокомолекулярных полимеров (ММ > 106) в пристенный слой уменьшаются турбулентность и гидравлическое сопротивление жидкости. При этом, чем больше ММ и размеры макромолекул в растворе, тем больше они снижают турбулентность в пристенном слое, то есть увеличивают скорость потока. Применение растворов ПАА в этом качестве позволяет стабилизировать буровые растворы при нефте- и газодобыче, увеличить скорость проходки пород при бурении скважин и снизить мощность силовых установок. Этот эффект используют при быстрой перекачке в турбулентном режиме течения по трубам нефтепродуктов, эмульсий и водных суспензий, в пожарной технике - для повышения дальнобойности выброса струи воды из брандспойтов, а также для увеличения скорости движения судов и подводных лодок, когда в носовой части судна водные растворы полимеров впрыскиваются в воду.

2.2 Получение полимеров акриламида

Акриламид легко полимеризуется с образованием линейного высокомолекулярного полимера под действием радикальных и ионных инициаторов, ультрафиолетового и радиационного излучения, ультразвука и электрического тока. Упрощенно радикальная и ионная полимеризация могут быть представлены схемой

Знаками R* и A- соответственно обозначены радикал и анион. Радикальная полимеризация - основной промышленный метод получения водорастворимого ПАА. При анионной полимеризации образуется поли-β-аланин (найлон-3), нерастворимый в воде полимер, растворяющийся только в некоторых органических растворителях при нагреве.

Наибольший практический интерес представляют полимеры с высокой молекулярной массой (ММ = 106 -107 ). Для их получения требуются высокая чистота мономеров, малые концентрации инициатора, отсутствие кислорода и примесей ионов металлов, которые являются сокатализаторами. На полимеризацию АА существенно влияет pH реакционной среды. При низких рН и высоких температурах возможно образование нерастворимых в воде сшитых полимеров вследствие создания между макромолекулами имидных мостиков (-CO-NH-CO-), а при высоких рН протекает гидролиз амидных групп. Последнюю реакцию можно использовать для получения на стадии полимеризации частично гидролизованного ПАА (до 30%). Полимеризацию проводят в водных растворах, в водно-органических растворителях и дисперсиях (в каплях водного раствора мономеров, диспергированных при механическом перемешивании в органических жидкостях в присутствии стабилизатора исходной дисперсии и образующегося полимера). В зависимости от способа полимеризации полимеры получают в виде растворов, гранул, порошка и дисперсий полимеров в органических жидкостях. Распространенным промышленным способом является полимеризация АА в водных растворах, что обусловлено получением полимеров со скоростью и ММ, недостижимыми при полимеризации в органических растворителях [3].

Радикальная сополимеризация АА с виниловыми мономерами используется для получения сополимеров, которые обладают лучшими потребительскими свойствами по сравнению с ПАА. Неионогенные сополимеры получают сополимеризацией АА с акрилонитрилом, акрилатами, винилиденхлоридом. При использовании в качестве сомономеров непредельных кислот или их солей получают анионные сополимеры, например сополимер АА с 2-акриламидо-2-метилпропансульфонатом натрия

а при применении в качестве сомономера, например N,N'-диэтиламиноэтилметакрилата, получают катионный сополимер [3]


Привитую и блок-сополимеризацию используют для модификации свойств полимеров. В отличие от обычных сополимеров, звенья которых в цепях хаотически или регулярно чередуются, цепи привитых и блок-сополимеров построены из длинных последовательностей звеньев одного типа. У привитых сополимеров цепи имеют разветвленное строение, а у блок-сополимеров - линейное. С использованием радикальных инициаторов, ультрафиолетового и радиационного облучения осуществляют прививку АА на различные полимеры, например полиолефины, а стирол, акрилонитрил и другие мономеры прививают на ПАА. Блок-сополимеры получают и путем конденсации функциональных групп различных полимеров, одним из которых является ПАА.

2.3 Химические свойства полиакриламида

Способность ПАА к химическим превращениям с образованием различных ионных производных, разветвленных и сшитых продуктов расширяет области применения полимеров. Рассмотрим наиболее важные реакции химических превращений ПАА.

Гидролиз. ПАА легко гидролизуется в присутствии кислот и щелочей

Щелочной гидролиз проводят под действием гидроксидов и карбонатов. В результате частичного превращения амидных групп в карбоксилатные, а также увеличения размеров макромолекулярных клубков и вязкости раствора вследствие электростатических отталкиваний одноименных зарядов цепи усиливаются загущающие, флокулирующие, структурирующие и другие свойства полимеров. Кислотный гидролиз в этих целях не используется, поскольку осложняется образованием нерастворимых продуктов вследствие протекания реакции имидизации [4]

Метилолирование. ПАА взаимодействует с формальдегидом в щелочной среде (рН 8-10) при 20°С с образованием полиметилолакриламида, который применяется для аппретирования тканей (пропитка или обработка поверхности с целью придания несминаемости и жесткости), обезвоживания осадков сточных вод и обогащения железных руд

При нагревании и подкислении образовавшегося полиметилолакриламида происходит сшивка цепей с образованием мостиков (-CONHCH2 -O--CH2 NHCO-).

Реакция Манниха. При обработке ПАА формальдегидом и вторичным амином в щелочной среде образуется аминометилированный полимер, который по флокулирующей способности превосходит исходный полимер


Поскольку приведенная реакция является обратимой, то для стабилизации основания Манниха его переводят в солевую форму нейтрализацией сильными кислотами или алкилирующими агентами (например, алкилгалогенидами, диметилсульфатом, эпигалогенгидрином). В результате получают сильноосновной поликатионит, пригодный для флокуляции отрицательно заряженных дисперсий.

Реакция Гофмана используется для получения слабоосновного полимера - поливиниламина. Реакцию проводят взаимодействием ПАА с большим избытком щелочи и небольшим избытком гипохлорита натрия

Осложнением реакции является деструкция макромолекул, которая приводит к уменьшению степени полимеризации.

Реакция сульфометилирования необходима для получения анионных производных ПАА при взаимодействии его с формальдегидом и бисульфитом натрия в щелочной среде (рН 13) [4]


В составе макромолекул наряду с сульфометилированными группами могут содержаться карбоксилатные группы (вследствие щелочного гидролиза амидных групп), а также непрореагировавшие амидные группы. В этом случае получаются эффективные структурообразователи грунтов, антистатические агенты для текстильных материалов и флокулянты для различных типов суспензий.

Реакции сшивки ПАА применяют для получения водопоглощающих изделий, пленок, защитных покрытий и капсул для лекарств, семян, удобрений. ПАА может сшиваться при взаимодействии с N,N'-метилен-бис-акриламидом

Образование трехмерных структур возможно также при действии на ПАА кислотами (реакция III), однако имидные мостики разрушаются при увеличении рН до 10-12. ПАА подвергается также сшивке при действии формальдегида в кислой среде с образованием мостиков (-CONH-CH2-NHCO-). Сополимеры АА с непредельными кислотами могут сшиваться ионами многовалентных металлов.

Приведенные данные дают общие представления о методах получения, химических свойствах и применении полимеров АА. Дальнейшее развитие исследований в этой области как в теоретическом, так и в практическом аспекте, несомненно, приведет к созданию новых и совершенствованию существующих перспективных методов синтеза полимеров - полимеризации и сополимеризации АА в концентрированных водных растворах и дисперсиях, развитию методов химической модификации ПАА, а также расширению сферы применения полимеров АА. В конечном итоге это будет способствовать удовлетворению растущих потребностей различных областей техники и технологии в интересных и нужных полимерах.


Список использованных источников

1. Электронный ресурс Химическая энциклопедия. Режим доступа: http://www.xumuk.ru/encyklopedia/

2. Электронный ресурс Энциклопедия вредных веществ. Режим доступа: http://www.xumuk.ru/vvp/2/74.html

3. Куренков В.Ф. Водорастворимые полимеры акриламида // Соросовский образовательный журнал. - 1997, №5 - с. 48-53.

4. Николаев А.Ф., Охрименко Г.И. Водорастворимые полимеры. - Л.: Химия. - 1979. - 61 с.

5. Полиакриламид / Под ред. В.Ф. Куренкова. - М.: Химия. - 1992. - 192 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита22:01:15 02 ноября 2021
.
.22:01:13 02 ноября 2021
.
.22:01:13 02 ноября 2021
.
.22:01:12 02 ноября 2021
.
.22:01:12 02 ноября 2021

Смотреть все комментарии (19)
Работы, похожие на Курсовая работа: Акриламид и полиакриламид: получение и свойства

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте