РЕФЕРАТ
По курсу “Теория информации и кодирования”
на тему:
"КОДЫ БОУЗА-ЧОУДХУРИ-ХОКВИНГЕМА"
БЧХ коды
Коды Боуза-Чоудхури-Хоквингема (БЧХ) – класс циклических кодов, исправляющих кратные ошибки, т. е. две и более (d0
³ 5).
Теоретически коды БЧХ могут исправлять произвольное количество ошибок, но при этом существенно увеличивается длительность кодовой комбинации, что приводит к уменьшению скорости передачи данных и усложнению приемо-передающей аппаратуры (схем кодеров и декодеров).
Методика построения кодов БЧХ отличается от обычных циклических, в основном, выбором определяющего полинома P(х). Коды БЧХ строятся по заданной длине кодового слова n
и числа исправляемых ошибок S
, при этом количество информационных разрядов k
не известно пока не выбран определяющий полином.
Рассмотрим процедуру кодирования с использованием кода БЧХ на конкретных примерах.
Пример
Построить 15-разрядный код БЧХ, исправляющий две ошибки в кодовой комбинации (т. е. n = 15, S = 2
).
Решение:
1. Определим количество контрольных m
и информационных разрядов k
m
£
h S .
Определим параметр h
из формулы
n = 2h
-1, h = log2
(n+1) = log2
16 = 4,
при этом: m
£
h S = 4
×
2 = 8
; k = n-m = 15-8 = 7
.
Таким образом, получили (15, 7)-код.
2. Определим параметры образующего полинома:
- количество минимальных многочленов, входящих в образующий
L = S = 2;
- порядок старшего (все минимальные - нечетные) минимального многочлена r
= 2S-1 = 3;
- степень образующего многочленаb
= m
£
8.
3. Выбор образующего многочлена.
Из таблицы для минимальных многочленов для кодов БЧХ (см. приложение 4) из колонки 4 (т. к. l = h = 4
) выбираем два минимальных многочлена 1 и 3 (т. к. r
= 3
):
M1
(x)
= 10011;
M2
(x)
= 11111.
При этом
P(x) =M1
(x)
×
M2
(x)
=10011´11111=111010001= x8
+ x7
+ x6
+ x4
+1
.
4. Строим образующую матрицу. Записываем первую строку образующей матрицы, которая состоит из образующего полинома с предшествующими нулями, при этом общая длина кодовой комбинации равна n = 15
. Остальные строки матрицы получаем в результате k-кратного циклического сдвига справа налево первой строки матрицы.
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение

Строки образующей матрицы представляют собой 7 кодовых комбинаций кода БЧХ, а остальные могут быть получены путем суммирования по модулю 2 всевозможных сочетаний строк матрицы.
Процедура декодирования, обнаружения и исправления ошибок в принятой кодовой комбинации такая же, как и для циклических кодов с d0
< 5
Пример
Построить 31-разрядный код БЧХ, исправляющий три ошибки в кодовой комбинации (т. е. n = 31, S = 3
).
Решение:
1. Определим количество контрольных разрядов m
и информационных разрядов k.
m
£
h S.
Определим параметр h
из формулы
n = 2h
-1,h = log2
(n+1) = log2
32 = 5,
при этом: m
£
h S = 5
×
3 = 15
; k = n-m = 31-15 = 16
.
Таким образом, получили (31, 16)-код.
2.Определим параметры образующего полинома:
- количество минимальных многочленов, входящих в образующий
L = S = 3;
- порядок старшего минимального многочлена
r = 3S-1 = 5;
- степень образующего многочлена
b
= m
£
15.
1. Выбор образующего многочлена.
Из таблицы для минимальных многочленов для кодов БЧХ ( приложение 4) из колонки 5 (т. к. l = h = 5
) выбираем три минимальных многочлена 1, 3 и 5 (т. к. r
= 5
):
M1
(x)
=100101;
M2
(x)
=111101;
M3
(x)
=110111.
При этом
P(x) = M1
(x)
×
M2
(x)
×
M3
(x)
=1000111110101111=
= x15
+ x11
+x10
+ x9
+ x8
+ x7
+ x5
+ x3
+ x2
+x+ 1
.
4. Строим образующую матрицу. Записываем первую строку образующей матрицы, которая состоит из образующего полинома с предшествующими нулями, при этом общая длина кодовой комбинации равна n = 31
. Остальные строки матрицы получаем в результате k-кратного циклического сдвига справа налево первой строки матрицы.
000000000000000100011111011111
G(31,16)=000000000000001000111110111110
. . .
100011111011111000000000000000
Строки образующей матрицы представляют собой 16 кодовых комбинации кода БЧХ, а остальные могут быть получены путем суммирования по модулю 2 всевозможных сочетаний строк матрицы.
Декодирование кодов БЧХ
Коды БЧХ представляют собой циклические коды и, следовательно, к ним применимы любые методы декодирования циклических кодов. Открытие кодов БЧХ привело к необходимости поиска новых алгоритмов и методов реализации кодеров и декодеров. Получены существенно лучшие алгоритмы, специально разработанные для кодов БЧХ. Это алгоритмы Питерсона, Бэрлекэмпа и др.
Рассмотрим алгоритм ПГЦ (Питерсона-Горенстейна-Цирлера). Пусть БЧХ код над полем GF(q) длины n и с конструктивным расстоянием d задается порождающим полиномом g(x), который имеет среди своих корней элементы , — целое число (например 0 или 1). Тогда каждое кодовое слово обладает тем свойством, что . Принятое слово r(x) можно записать как r(x) = c(x) + e(x), где e(x) — полином ошибок. Пусть произошло ошибок на позициях (t максимальное число исправляемых ошибок), значит , а — величины ошибок.
Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:
— Разгрузит мастера, специалиста или компанию;
— Позволит гибко управлять расписанием и загрузкой;
— Разошлет оповещения о новых услугах или акциях;
— Позволит принять оплату на карту/кошелек/счет;
— Позволит записываться на групповые и персональные посещения;
— Поможет получить от клиента отзывы о визите к вам;
— Включает в себя сервис чаевых.
Для новых пользователей первый месяц бесплатно.
Зарегистрироваться в сервисе
Можно составить j-ый синдром Sj принятого слова r(x):
.
Задача состоит в нахождений числа ошибок u, их позиций и их значений при известных синдромах Sj.
Предположим, для начала, что u в точности равно t. Запишем (1) в виде системы нелинейных уравнений в явном виде:

Обозначим через локатор k-ой ошибки, а через величину ошибки, . При этом все Xk различны, так как порядок элемента β равен n, и поэтому при известном Xk можно определить ik как ik = logβXk.

Составим полином локаторов ошибок:

Корнями этого полинома являются элементы, обратные локаторам ошибок. Помножим обе части этого полинома на . Полученное равенство будет справедливо для
:

Положим и подставим в (3). Получится равенство, справедливое для каждого и при всех :

Таким образом для каждого l можно записать свое равенство. Если их просуммировать по l, то получиться равенство, справедливое для каждого
:
.
Учитывая (2) и то, что

(то есть меняется в тех же пределах, что и ранее) получаем систему линейных уравнений:

.
Или в матричной форме
,
Где


Если число ошибок и в самом деле равно t, то система (4) разрешима, и можно найти значения коэффициентов . Если же число u < t, то определитель матрицы S(t) системы (4) будет равен 0. Это есть признак того, что количество ошибок меньше t. Поэтому необходимо составить систему (4), предполагая число ошибок равным t − 1. Высчитать определитель новой матрицы S(t − 1) и т. д., до тех пор, пока не установим истинное число ошибок.
После этого можно решить систему (4) и получить коэффициенты полинома локаторов ошибок. Его корни (элементы, обратные локаторам ошибок) можно найти простым перебором по всем элементам поля GF(qm). К ним найти элементы, обратные по умножению, — это локаторы ошибок . По локаторам можно найти позиции ошибок (ik = logβXk), а значения Yk ошибок из системы (2), приняв t = u. Декодирование завершено.
Коды Рида–Соломона
Широко используемым подмножеством кодов БЧХ являются коды Рида-Соломона, которые позволяют исправлять пакеты ошибок. Пакет ошибок
длины b
представляет собой последовательность из таких b
ошибочных символов, что первый и последний из них отличны от нуля. Существуют классы кодов Рида-Соломона, позволяющие исправлять многократные пакеты ошибок.
Коды Рида-Соломона широко используются в устройствах цифровой записи звука, в том числе на компакт-диски. Данные, состоящие из отсчетов объединяются в кадр, представляющий кодовое слово. Кадры разбиваются на блоки по 8 бит. Часть блоков являются контрольными.
Обычно 1 кадр (кодовое слово) = 32 символа данных +24 сигнальных символа +8 контрольных бит = 256 бит.
Сигнальные символы это вспомогательные данные, облегчающие декодирование: служебные сигналы, сигналы синхронизации и т. д.
При передаче данных производится перемежение (изменение порядка следования по длине носителя и во времени) блоков с различным сдвигом во времени, в результате чего расчленяются сдвоенные ошибки, что облегчает их локализацию и коррекцию. При этом используются коды Рида-Соломона с минимальным кодовым расстоянием d0
= 5.
Сверточные коды
Кроме рассмотренных корректирующих кодов используются так называемые сверточные коды, контрольные биты, в которых формируются непрерывно из информационных и контрольных бит смежных блоков.
Выводы
Таким образом, в результате написания реферата, пришли к выводу, что коды Боуза-Чоудхури-Хоквингхема – это широкий класс циклических кодов, способных исправлять многократные ошибки.
БЧХ-коды играют заметную роль в теории и практике кодирования. Интерес к ним определяется следующим: коды БЧХ имеют весьма хорошие свойства; данные коды имеют относительно простые методы кодирования и декодирования; коды Рида-Соломона являются широко известным подклассом недвоичных БЧХ кодов, которые обладают оптимальными свойствами, и применяются для исправления многократных пакетов ошибок.
Список использованной литературы
1. Блейхут Р. Теория и практика кодов, контролирующих ошибки = Theory and practice of error control codes. — М.: Мир, 1986. — С. 576
2. Дмитриев В.И. Прикладная теория информации: Учебник для вузов. М.: Высшая школа , 1989. 320 c.
3. Колесник В.Д., Полтырев Г.Ш. Курс теории информации. – М.: Наука, 1982.
4. Кудряшов Б.Д. Теория информации. Учебник для вузов Изд-во ПИТЕР, 2008. – 320с.
5. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки. — М.: Мир, 1976. — С. 596.
6. Семенюк В. В. Экономное кодирование дискретной информации. – СПб.: СПб ГИТМО (ТУ), 2001
7. У. Петерсон, Э. Уэлдон, Коды, исправляющие ошибки, Москва, “Мир”, 1976.
8. Э. Берлекэмп, Алгебраическая теория кодирования, Москва, “Мир”, 1971.
|