Министерство сельского хозяйства Российской Федерации
ФГУ ВПО
Тюменская государственная сельскохозяйственная академия
Механико-технологический институт
Кафедра: "Безопасности жизнедеятельности"
Расчетно-графическая работа
на тему:
"Расчёт противорадиационного укрытия на предприятии АПК"
Выполнил: студент гр.
Проверил:
Тюмень, 2009
Содержание
Введение
Задача 1
Задача 2
Задача 3
Задача 4
Задача 5
1. Расчёт коэффициента защищённости противорадиационного укрытия
2. Дополнительные расчёты коэффициента защищённости противорадиационного укрытия
Литература
Защита населения от современных средств поражения - главная задача гражданской обороны.
Укрытие в защитных сооруженияхобеспечивает различную степень защиты от поражающих факторов ядерного, химического и биологического оружия, а также от вторичных поражающих факторов при ядерных взрывах и применении обычных средств поражения (от разлетающихся с большой силой и скоростью обломков иосколков конструкций сооружений,комьев грунта и т.д.). Этот способ, обеспечивая надежную защиту, вместе с тем практически исключает в период укрытия производственную деятельность. Применяется при непосредственной угрозе применения ОМП и при внезапном нападении противника.
Противорадиационные укрытия (ПРУ). Они обеспечивают защиту укрываемых от воздействия ионизирующих излучений и радиоактивной пыли, отравляющих веществ, биологических средств в капельно-жидком виде и от светового излучения ядерного взрыва. При соответствующей прочности конструкций ПРУ могут частично защищать людей от воздействия ударной волны и обломков разрушающихся зданий. ПРУ должны обеспечивать возможность непрерывного пребывания в них людей в течение не менее двух суток.
Защитные свойства ПРУ от радиоактивных излучений оцениваются коэффициентом защиты (Кз) или коэффициентом ослабления (Косл), который показывает, во сколько раз укрытие ослабляет действие радиации, а следовательно, и дозу облучения.
Рассчитать границы очага ядерного поражения радиусы зон разрушения после воздушного ядерного взрыва мощностью боеприпаса 150 кТ. Построить график и сделать вывод.
Дано:
Q1
=150 кТ
Q2
=100 кТ
R2п
=1,7 км
R2с
=2,6 км
R2ср
=3,8 км
R2сл
=6,5 км
|
Решение:
; Rп
=; Rc
=; Rср
=; Rсл
=.
Ответ: Rп
=1,8 км; Rс
=2,8 км; Rср
=4,2 км; Rсл
=7,2 км.
|
Rп
, Rс
, Rср
, Rсл
- ? |
Вывод: после воздушного ядерного взрыва мощностью 150 кТ, зона поражения составила 14,4 км. Радиусы зон разрушения следующие: Rп
= 1,8 км; Rс.
= 2,8 км; Rср
= 4,2 км; Rсл
= 7,2 км.
Рассчитать границы очага ядерного поражения и радиусы зон разрушения при наземном ядерном взрыве мощностью боеприпаса 150 кТ. Построить график и сделать вывод.
Дано:
Q1
=150 кТ
Q2
=100 кТ
R2п
=1,9 км
R2с
=2,5 км
R2ср
=3,2 км
R2сл
=5,3 км
|
Решение:
; Rп
=; Rc
=; Rср
=; Rсл
=.
Ответ: Rп
=2,1 км; Rс
=2,8 км; Rср
=3,5 км; Rсл
=5,9 км.
|
Rп
, Rс
, Rср
, Rсл
- ? |
Вывод: при наземном ядерном взрыве зона полных разрушений больше чем при воздушном ядерном взрыве на 0,6 км. А общая зона поражения меньше на 2,6 км.
Рассчитать величину спада уровня радиации через 2, 6, 12, 24, 48 часов после аварии на АЭС и после ядерного взрыва, если начальный уровень радиации через 1 час составит Р0
=150 Р/ч. Построить график и сделать вывод.
Дано:
Р0
=150 Р/ч
t=2, 6, 12, 24, 48 ч
|
Решение:
Рt
=, степень 1,2 применяется при расчетах спадов уровня радиации после ядерного взрыва, 0,5 - после аварии на АЭС.
После аварии на АЭС
Рt2
=; Рt6
=; Рt12
=; Рt24
=; Рt48
=
После ядерного взрыва:
Рt2
=; Рt6
=; Рt12
=; Рt24
=; Рt48
=;
Ответ:
1) Рt2
=106,38 Р/ч; Рt6
=61,47 Р/ч; Рt12
=43,35 Р/ч; Рt24
=30,67 Р/ч; Рt48
=21,67 Р/ч;
2) Рt2
=65,50 Р/ч; Рt6
=17,48 Р/ч; Рt12
=7,60 Р/ч; Рt24
=3,63 Р/ч; Рt48
=1,44 Р/ч.
|
Рt
- ? |
Вывод: спад уровня радиации при ядерном взрыве происходит быстрее чем при аварии на АЭС.
Рассчитать эквивалентную дозу облучения, полученную людьми, находящимися на зараженной радиационными веществами местности в течение 6 часов. Если начальный уровень радиации через 1 час после аварии на АЭС составил Р0
=150 мР/.
Дано:
Р0
=150 мР/ч
t=6 ч
α=25%
β=25%
γ=25%
η=25%
|
Решение:
; ;
; Dэкс
=0,877 · Dпогл
;
Рад;
Dэкв
= Q∆·Dпогл.
Q - коэффициент качества или относительный биологический эквивалент, показывает во сколько раз данный вид излучения превосходит рентгеновское по биологическому воздействию при одинаковой величине поглощенной дозы, для α - излучения Q=20, β и γ - излучения Q=1, η - излучения Q=5-10.
Dэкв
= 20 · 723,38 · 0,25 + 1 · 723.38∙0,25+1∙723,38∙0,25+ +5∙723,38 ∙0,25=4882,8 мБэр = 0,0048 Зв.
Ответ: Dэкв
=0,0048 Зв.
|
Dэкв
- ? |
Вывод: Люди, находящиеся на зараженной радиацией территории после аварии на АЭС в течение 6 часов получат эквивалентную дозу 0,0048 Зв. Данная доза не представляет опасность для возникновения лучевой болезни.
Рассчитать эквивалентную дозу облучения, полученную людьми, находящимися на зараженной радиационными веществами местности в течение 6 часов. Если начальный уровень радиации через 1 час после ядерного взрыва составил Р0
=150 мР/.
Дано:
Р0
=150 мР/ч
t=6 ч
α=25%
β=25%
γ=25%
η=25%
|
Решение:
; ;
; Dэкс
=0,877 · Dпогл
;
Рад;
Dэкв
= Q∆·Dпогл.
Dэкв
= 20 · 572,90 · 0,25 + 1 · 572,90 ∙ 0,25+1 ∙ 572,90 ∙ 0,25+
+5 ∙ 572,90 ∙ 0,25=3867,07 мБэр = 0,0038 Зв.
Ответ: Dэкв
=0,0038 Зв.
|
Dэкв
- ? |
Вывод: Люди, находящиеся на зараженной радиацией территории после ядерного взрыва в течение 6 часов получат эквивалентную дозу 0,0038 Зв. Данная доза не представляет опасность для возникновения лучевой болезни.
Исходные данные для расчёта противорадиационной защиты.
1. Место нахождения ПРУ - в одноэтажном здании;
2. Материал стен - Ко (из каменных материалов и кирпич);
3. Толщина стен по сечениям:
А - А - 25 см;
Б - Б - 12 см;
В - В - 12 см;
Г - Г - 25 см;
1 - 1 - 25 см;
2 - 2 - 12 см;
3 - 3 - 25 см.
4. Перекрытие: тяжёлый бетон, дощатый по лагам толщиной 10 см, вес конструкции - 240 кгс/м2
;
5. Расположение низа оконных проёмов 2,0 м;
6. Площадь оконных и дверных проёмов против углов (м2
)
α1
= 8/2,α2
= 15/4/2,α3
= 7,α4
= 6;
7. Высота помещения 2,9 м;
8. Размер помещения 4×6м;
9. Размер здания 12×20 м;
10. Ширина заражённого участка, примыкающего к зданию 20 м.
Предварительные расчёты таблица №1.
Сечение здания |
Вес 1 м2
конструкции
Кгс/м2
|
|
1-Lст
стен
|
Приведённый вес Gпр
кгс/м2
|
Суммарный вес против углов Gα, Кгс/м2
|
А - А
Б - Б
В - В
Г - Г
1 - 1
2 - 2;
3 - 3
|
450
216
216
450
450
216
450
|
0,134
0,258
0,068
0,034
0,020
0,221
0,057
|
0,866
0,742
0,932
0,966
0,861
0,781
0,943
|
389,7
160,2
201,3
434,7
360,00
168,4
424,3
|
Gα4
= 389,7
Gα2
= 796,28
Gα3
= 360,00
Gα1
= 592,83
|
1. Материал стен - Ко (из каменных материалов и кирпича).
2. Толщина стен по сечению (см):
А - А - 25;
Б - Б - 12;
В - В - 12;
Г - Г - 25;
1 - 1 - 25;
2 - 2 -12;
3 - 3 - 25.
3. Определяем вес 1 м2
конструкций для сечений (кгс/м2
). Таблица №1.
А - А - 450;
Б - Б - 216;
В - В - 216;
Г - Г - 450;
1 - 1 - 450;
2 - 2 - 216;
3 - 3 - 450.
4. Площадь оконных и дверных проёмов против углов (м2
).
α1
= 8/2;
α2
= 15/4/2;
α3
= 7;
α4
= 6.
5. Высота помещения 2,9 м2
.
6. Размер здания 12×20 м.
Площадь стен:
S1=2,9*·12=34,8 м2
- внутренней;
S2=2,9* 20=58 м2
- внешний.
G
α1
= 3 - 3 +2 - 2
G
α2
= Г-Г + В-В + Б-Б
G
α3
= 1 - 1
G
α4
= А-А
7. Определим коэффициент проёмности.
;
А – А,
;
Б – Б,
В – В ,
Г – Г,
1 – 1,
2 – 2 ,
3 – 3,
8. Определяем суммарный вес против углов Gα.
Gα1
= 168,4 + 424,3 = 592,8;
Gα2
= 160,2 + 201,3 + 434,7 = 796,2;
Gα3
= 360;
Gα4
= 389,7;
9. Определяем коэффициент защищённости укрытия.
Коэффициент защиты Кздля помещений в одноэтажных зданиях определяется по формуле:
Где К1
- коэффициент, учитывающий долю радиации, проникающий через наружные и внутренние стены принимаемый по формуле:
10. Определяем коэффициент, учитывающий долю радиации, проникающей через наружные и внутренние стены.
11. Размер помещения (м×м).4х6
α1
= α3
= 67,4
α2
= α4
=112,6
12. Находим кратность ослабления степени первичного излучения в зависимости от суммарного веса окружающих конструкций по таблице 28.
Кст1
= 592,83 = 550 + 42,83 = 45 + (42,83· 0,4) = 62,13
550 - 45 ∆1 = 600 - 550=50
600 - 65 ∆2 = 65 - 45=20
∆2/∆1 = 20/50=0,4
Кст2
= 796,28 = 700 + 96,28= 120 + (96,28 · 1,3) = 245,16
700 - 120 ∆1 = 800 - 700 = 100
800 - 250 ∆2 = 250 - 120 = 130
∆2/∆1 = 130/100 = 1,3
Кст3
= 360 = 350 + 10 = 12 + (10 · 0,08) = 12,08
350 - 12 ∆1 = 400 - 350 =50
400 - 16 ∆2 = 16 - 12 = 4
∆2/∆1 = 4/50 = 0,08
Кст4
= 389,7 = 350 + 39,7 = 12 + (39,7 · 0,08) = 12,31
350 - 12 ∆1 = 400 - 350 =50
400 - 16 ∆2 = 16 - 12 = 4
∆2/∆1 = 4/50 = 0,08
13. Определяем коэффициент стены.
Кст -
кратность ослабления стенами первичного излучения в зависимости от суммарного веса ограждающих конструкций.
14. Определяем коэффициент перекрытия.
Кпер
- кратность ослабления первичного излучения перекрытием.
10 см бетон - 240 кгс/м 2
= 4,28
Кпер
= 240= 200 + 40= 3,4 + (40 · 0,022) = 4,28
200 - 3,4 ∆1 = 250- 200 = 50
250 - 4,5 ∆2 = 4,5 - 3,4 = 1,1
∆2/∆1 = 1,1/50 = 0,022
15. Находим коэффициент V1
, зависящий от высоты и ширины помещения, принимается по таблице №29.
V (3)
= 2,9= 2+ 0,9= 0,06 - (0,9 · 0,02) = 0,042
2 - 0,06 ∆1 = 3- 2 = 1
3 - 0,04 ∆2 = 0,04- 0,06 = - 0,02
∆2/∆1 = - 0,02/1 = - 0,02
V (6)
= 2,9= 2+ 0,9= 0,16 - (0,9 · 0,07) = 0,097
2 - 0,16 ∆1 = 3- 2 = 1
3 - 0,09 ∆2 = 0,09- 0,16 = - 0,07
∆2/∆1 = - 0,07/1 = - 0,07
V (4)
= 4= 3+ 1= 0,042 + (1 · 0,018) = 0,06
3 - 0,042 ∆1 = 6- 3 = 3
6 - 0,097 ∆2 = 0,097- 0,042 =0,055
∆2/∆1 = 0,055/3 = 0,018
V (4)
=
V1
=
0,06
16. Находим коэффициент,учитывающий проникание в помещение вторичного излучения.
К0
=
0,09a = 0,
09 ·
1,5 = 0,
135
Sa
= 8+ 15 + 7 + 6 = 36 м2
Sп
= 4 · 6 = 24 м2
а = 36/24 = 1,5
17. Определяем коэффициент, учитывающий снижение дозы радиации в зданиях, расположенных в районе застройки Км
, от экранизирующего действия соседних строений, определяется по таблице №30.
Км
= 0,65
18. Определяем коэффициент, зависящий от ширины здания и принимаемый по таблице №29.
Кш
= 0,24
19. Определяем коэффициент защищённости укрытия.
Вывод:
Коэффициент защищённости равен Кз
=6,99
, это меньше 50
, следовательно здание не соответствует нормированным требованиям и не может быть использовано в качестве противорадиационного укрытия.
С целью повышения защитных свойств здания необходимо провести следующие мероприятия 2,56 СНИПА:
1. Укладка мешков с песком у наружных стен здания;
2. Уменьшение площади оконных проёмов;
3. Укладка дополнительного слоя грунта на перекрытие.
Предварительные расчёты таблица №2
Сечение здания |
Вес 1 м2
конструкции
Кгс/м2
|
|
1 - αт
стен
|
Приве-дённый
вес Gпр
кгс/м2
|
Суммарный
вес против
углов Gα, Кгс/м2
|
А - А
Г - Г
1 - 1
3 - 3
|
1550
1550
1550
1550
|
0,067
0,017
0,014
0,028
|
0,93
0,98
0,99
0,97
|
1446
1523
1534
1505
|
Gα1
= 1673
Gα2
= 1884
Gα3
= 1534
Gα4
= 1446
|
1. Ширина менее 50 см = 0,5 м
.
2. Объём массы песка 2000 - 2200 кгс/м2
.
3. Определяем вес 1 м2
.
2200 · 0,5=1100 кгс/м2
.
4. Уменьшаем площадь оконных проёмов на 50%.
5. Определяем суммарный вес против углов Gα.
Gα1
= 168,42 +1505 = 1673;
Gα2
= 160,27 + 201,31 + 1523 = 1884;
Gα3
= 1534;
Gα4
= 1446;
6. Определяем коэффициент, учитывающий долю радиации, проникающей через наружные и внутренние стены.
7. Укладываем слой грунта на перекрытие 30 см = 0,3 м.
8. Объём массы грунта
1800 кгс/м2
;
1800 · 0,3 = 540 кгс/м2
.
Определяем вес 1 м2
перекрытия грунта:
540+240=780 кгс/м2,
9. Определяем коэффициент перекрытия.
Кпер
= 780= 700 + 80= 70 + (80 · 0,5) = 110
700 - 70 ∆1 = 800 - 700= 100
800 - 120 ∆2 = 120-70 = 50
∆2/∆1 = 50/100 = 0,5
Кпер
= 110
V1
= 0,06
К0
= 0,09 · а
α = 1,5/2= 0,75
К0
= 0,09 · 0,75 = 0,067
Км
= 0,65
Кш
= 0,24
10. Определяем коэффициент стены.
Кст
=1446 = 1300 + 146 = 8000 + (146 · 10) = 9460
1300 - 8000 ∆1 = 1500 - 1300 = 200
1500 - 10000 ∆2 = 10000 - 8000 = 2000
∆2/∆1 = 2000/200 = 10
11. Определяем коэффициент защищённости укрытия.
Вывод:
Коэффициент защищённости равен Кз
=168,3
, это больше 50
, соответственно здание соответствует нормированным требованиям и может быть использовано в качестве противорадиационного укрытия.
1. СНИП Строительные нормы и правила 11 - 11, 77 г, Защитные сооружения гражданской обороны.
2. В.Ю. Микрюков Безопасность жизнедеятельности, высшее образование 2006 г.
|