Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Биосистемы

Название: Биосистемы
Раздел: Рефераты по экологии
Тип: реферат Добавлен 18:02:25 26 марта 2004 Похожие работы
Просмотров: 635 Комментариев: 19 Оценило: 8 человек Средний балл: 4 Оценка: 4     Скачать

О.В. Смирнов, С.В. Воробьева

Тюменский центр Международной Академии наук экологии и безопасности жизнедеятельности

Электрокинетические свойства биосистем используются для получения безопасной обеззараженной воды. Обеззараживание – один из наиболее важных процессов приготовления питьевой воды. Известно, что потребляемая человеком вода часто является причиной желудочно-кишечных заболеваний и других заболеваний.

На основании анализа литературных материалов выделяются следующие методы обеззараживания воды, связанные с электричеством:

электрохимические, использующие электроэнергию для получения бактерицидного или нейтрального агента, озонирование, обработка ионами серебра, электролиз, электрофлотация;

методы электрообработки на основе силового взаимодействия поляризованных или обладающих жестким диполем бактериальных тел- электрофорез, электрокоагуляция, электрический разряд, обработка ультракороткими волнами тока.

При обработке воды каждым из указанных методов изменяются агрегативная и седиментационная устойчивости биодисперсий. Следовательно, теоретическая трактовка механизма обеззараживания вод, связанного с разделением фаз, а также технологические и аппаратурные решения могут быть выполнены, исходя из основных положений теории коллоидно-дисперсных систем и их устойчивости.

Известно, что недостаточная очистка исходной воды отрицательно сказывается на бактерицидном действии применяемых обеззараживающих агентов и в конечном счете на качестве получаемой воды. Хотя в процессе коагулирования бактерии и вирусы не гибнут, но они инактивируются за счет осаждения (например, в фильтре) и последующего удаления сконцентрированной фазы. Так, коагулирование и удаление коллоидных и менее дисперсных включений из речной воды понижает общее содержание вирусов в ней на 98% от исходного. Имеются также указания на достаточно полную инактивацию вирусов полиомиелита и гепатита при реагентной обработке воды.

Таким образом, учитывая, что по своей величине бактерии соответствуют коллоидным частицам и входят в состав более крупных образований, сорбируясь на частицах и агрегатах, для их удаления приемлемы адгезия, адсорбция, коагуляция и флокуляция. Экспериментально подтверждено, что отделение частиц коагулянта и взвесей от воды обеспечивает значительно большую бактериальную безопасность, чем хлорирование, озонирование или ультрафиолетовое облучение, которое эффективно при условии бесцветной и абсолютно прозрачной воды.

Нерастворимые в воде примеси с величиной частиц 10-5 – 10-4 см и более обуславливают мутность воды, а в некоторых случаях ее цветность. Эти частицы могут представлять собой ил, планктон, в них возможно присутствие болезнетворных бактерий, споровых микроорганизмов и вирусов, и, наконец, они иногда токсичны. Полнота удаления этих примесей из воды непосредственно зависит от степени осветления последней. К таким примесям со степенью дисперсности 10-6 – 10-5 см также могут быть отнесены болезнетворные (патогенные) микроорганизмы, вирусы и другие организмы, которые по своим размерам приближаются к коллоидным частицам.

Устойчивость частиц во многом зависит и от электрического заряда, который обуславливает целый ряд свойств микроорганизмов, например, их электрофоретическую подвижность, устойчивость биосуспензии, склонность к спонтанной агглютинации и некоторые другие особенности, вплоть до различий в вирулентности. Существует аналогия между электрическим зарядом белковых молекул и бактериальных клеток. Белки входящие в состав бактериальной клетки, обуславливают ряд ее особенностей, свойственных белковым частицам. Бактериальная клетка ведет себя, как амфотерный элетролит благодаря большому количеству аминокислот, входящих в состав ее бактериального белка. Поэтому диссоциация определенных групп в белковой структуре позволяет каждой белковой частице проявить себя в качестве кислоты и в качестве основания.

При диссоциации карбоксильной группы происходит образование ионов водорода, вследствие чего белок приобретает слабо кислый характер и в электрическом поле будет двигаться к аноду. В свою очередь, аминогруппа (- Н2 ), присоединяя протоны, придает белку щелочной характер и тем самым обуславливает передвижение микроба к катоду.

В воде протоны растворенного белка присоединяются к аминогруппам, таким образом частицы находятся в ионизированой форме, несущей одновременно положительный и отрицательный заряды.

В электрическом поле эти частицы электрически нейтральны и не передвигаются ни к аноду, ни к катоду. Это явление имеет место в нейтральной среде. При изменении рН среды значительно изменяется величина электрического заряда. То значение рН, при котором белковая частица ведет себя как амфиион и остается неподвижной в электрическом поле вследствие того, что потенциал ее равен 0, называется изоэлектрической точкой.

Микромолекулы, расположенные на поверхности клеточной стенки (или капсулы) микроорганизма, содержат заряженные группы, в результате чего этот организм имеет поверхностный заряд. Поверхность большинства микробных клеток заряжена отрицательно, так как среди клеточных компонентов, образующих эту поверхность, присутствуют соединения, изоэлектрическая точка которых лежит в кислой зоне (рН = 7). За небольшим исключением отдельные организмы не поляризованы, так как заряд распределяется равномерно по всей поверхности клетки.

Электрофоретическая подвижность микроорганизма зависит от штамма или вида, а также от ионной силы и значения рН окружающей среды. Она изменяется с возрастом микроорганизма, например, наименьшая электрофоретическая подвижность бактерии Е.Coli наблюдается в течение ранней экспоненциальной фазы роста. Подобно белковым частицам бактериальные клетки, суспендированные в водной среде с различными рН, при наложении электрического поля перемещаются или в сторону анода, или в сторону катода. В водной нейтральной среде они движутся по направлению к аноду, что указывает на то, что бактериальные клетки заряжены отрицательно.

Производились попытки использовать электрокинетическую подвижность бактерий в качестве признака или даже показателя сравнительной вирулентности различных представителей одного и того же вида. Однако, наряду с экспериментальными трудностями при определении этого свойства, имеется множество переменных величин, влияющих на движение бактерий в электрическом поле. Так, например, известно, что молодые клетки более электроотрицательны, чем взрослые. По-видимому, изменения электрического заряда в процессе роста клеток чрезвычайно сложны.

Электрический заряд бактериальной клетки, суспендированной в водной среде, объясняется возникновением двойного электрического слоя. Бактериальная клетка с помощью своих поверхностных ионов притягивает ионы противоположного заряда из среды. В результате этого получается двойной слой, внутренняя часть которого- поверхность клетки, а наружная- среда, в которой она находится. кси- потенциал бактерий выражает разность потенциалов между подвижной и неподвижной частями двойного электрического слоя, то есть между глубоко лежащей частью двойного слоя, непосредственно связанной с поверхностью частицы, и всей остальной средой. Из этого следует, что кси - потенциал бактерий значительно зависит от степени концентрации ионов водорода среды.

Бактерии, суспендированные в нейтральной водной среде, под влиянием электрического поля несут отрицательный электрический заряд. Это связано с состоянием щелочной диссоциации белка бактерии. При постепенном подкислении среды потенциал снижается до нуля, при дальнейшем подкислении бактерии перезаряжаются и приобретают положительный электрический заряд и поэтому под действием электрического поля перемещаются теперь к катоду. Чем больше удаляются бактерии от изоэлектрической точки, тем выше их положительный заряд. Скорость движения не изменяется и после смерти клетки.

Направление движения бактерий в электрическом поле, спонтанная агглютинация, которую они часто обнаруживают при кислой реакции среды указывают, что у бактерий при их физиологических значениях рН наблюдается перевес кислых групп над основными. Вследствие отрицательного заряда и коллоидных размеров бактерий и взаимодействие с положительно заряженными ионами окружающей среды представляет особенный интерес. Между клеткой и средой все время происходит обмен ионами, который зависит как от концентрации этих ионов, так и от их способности к адсорбции.

Таким образом, биосистемы обладают многими свойствами обычных дисперсных систем. Попытка удаления их биофазы из питьевой воды путем коагуляции и флокуляции является сравнительно новой.

Электрообработка, при которой кроме анодного растворения электродов из железа и алюминия имеют место явления специфические- поляризационные, связанные с воздействием поля на клетку как слоистый полупроводник- диэлектрик, должна быть тем более эффективной при обеззараживании воды. Известно, что для некоторых географических районов применение химических методов обеззараживания воды, например, для Крайнего Севера и Сибири, связано со значительными трудностями. В условиях низкой температуры обеззараживающее действие хлора не проявляется, транспортировка реагентов в условиях Севера и в Сибири для обеззараживания сложна и стоит дорого, для реагентной обработки необходимы капитальные очистные сооружения. На Крайнем Севере и в Сибири для обеззараживания воды наиболее перспективны электрохимические методы и методы электрообработки.

Общим для методов электрообработки является использование внешнего электрического поля. Сами методы, в зависимости от явлений, происходящих в межэлектродном пространстве, могут быть классифицированы следующим образом. Во внимание принимались технология электрообработки, особенности внешнего электрического поля (частота, равномерность и т.д.). Выделялись такие методы: электродиализ, электролиз, электрохимическая коагуляция, электрофлотация, электрофорез, электрокоагуляция, диполофорез, электрофильтрование, электроосмос, электрический разряд малой мощности, высоковольтный импульсный разряд, комплекс электрических воздействий.

Принципиально новые технологии и биотехнологии с использованием электричества породили ряд актуальных вопросов безопасности как в отношении работающих, так и в экологическом аспекте.

Применение электрообработки в быту, водоснабжении и водоотведении, а так же при освоении нефтегазоперерабатывающих территорий Сибири и Крайнего Севера, в монолитном домостроении, при сооружении оснований и фундаментов, производстве зданий из керамических масс, обезвоживании осадков, осушении грунтов и строительных конструкций, а также при создании замкнутых систем водоснабжения с использованием узлов электрообработки, позволило улучшить условия труда за счет исключения контакта работающих с вредными реагентами, например, солями железа, алюминия, магния, органическими добавками (в бетон или скоагулированную воду) и др.

Внедрение АСУ ТП с использованием электрообработок позволило достичь тех же целей там, где невозможна по технологии замена вредных компонентов- аэрозолей, излучений, шума, вибраций, вредных газов и жидкостей.

В целом отмечается снижение общего числа несчастных случае, но тяжесть их, к сожалению, несколько возрастает.

Для широкого внедрения электрических методов необходимо убедится в отсутствии опухолеродного действия воды, подвергнутой электрообработке. Особенно это важно для водообеспечения экипажей автономных объектов, длительно использующих воду после электрообработки.

Проводились исследования к.м.н. Окуневым Р.А с сотрудниками по проверке возможной онкогенности веществ образовывающихся при электрообработке.

Согласно заключению экспертов Всемирной организации здравоохранения, не менее 75% всех случаев возникновения злокачественных опухолей обусловлено факторами окружающей среды, и прежде всего широким внедрением химии в сферу производственной и хозяйственно- бытовой деятельности человека. Это обстоятельство требует проверки на канцерогенность химических веществ, однако она трудно выполнима как из-за огромного их числа (ежегодно синтезируется более 250000 новых веществ), так и сложности, длительности, дороговизны проведения классических опытов на животных. Так, эксперименты по определению канцерогенности только одного какого- либо вещества требует участия многих специалистов, использования многочисленных методик; длительности опыта не менее 2-3 лет. По данным США, оценка канцерогенности лишь одного химического вещества обходится в 300 - 500000 долларов.

Проводилось исследование с использованием в качестве микроорганизмов- тестеров сальмонеллы тифимуриум линий (штаммов) ТА- 98 и 100. На первом этапе исследовалась мутагенность воды, подвергнутой различным электрическим воздействиям: постоянное электрическое поле, электрический разряд малой мощности и их сочетание- комплекс электрических воздействий. Число мутантов обоих штаммов мальмонеллы тифимуриум в воде после использования различных методов электрообработки примерно такое же, что и в контроле (дехлорированной водопроводной воде). При этом следует подчеркнуть, что достоверным считается увеличение числа мутантов в 3 и более раза.

На следующем этапе работы изучалась мутагенность воды, обработанной комплексом электрических воздействий. В этой серии опытов производилось предварительное концентрирование воды в 500 раз с помощью хлористого метилена на специальной установке. Использовались 3 разные модификации методики Эймса: ТТА- тест на твердом агаре (чашечная проба), МПр - модификация с преинкубацией и ЖИП- высокочувствительная жидкостно- инкубационная проба.

С помощью физико-химических методов одновременно производилось количественное определение основных групп канцерогенных веществ полициклических ароматических углеводородов (в частности, бенз(а)пирена) и нитрозосоединений. Определение бенз(а)пирена проводилось флуоресцентно- спектральным методом на спектрофотометре ДФС- 12, нитрозосоединений- хемилюминесцентным методом на газовом хроматографе с детектором ТЭА- 502. Увеличение числа мутантов в пробах обработанной воды ни в одном случае не превышало допустимого предела. Ни в одной пробе не обнаружено таких канцерогеннов, как бенз(а)пирена и нитрозосоединений.

Таким образом, проведенные иследования не установили опухолеродной активности воды, подвергнутой электрообработке.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита20:54:23 01 ноября 2021
.
.20:54:21 01 ноября 2021
.
.20:54:20 01 ноября 2021
.
.20:54:19 01 ноября 2021
.
.20:54:18 01 ноября 2021

Смотреть все комментарии (19)
Работы, похожие на Реферат: Биосистемы

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте