Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Лабораторная работа: Кристаллографические символы

Название: Кристаллографические символы
Раздел: Рефераты по физике
Тип: лабораторная работа Добавлен 15:18:31 14 марта 2007 Похожие работы
Просмотров: 528 Комментариев: 25 Оценило: 4 человек Средний балл: 4.3 Оценка: неизвестно     Скачать

ЛАБОРАТОРНАЯ РАБОТА

КРИСТАЛЛОГРАФИЧЕСКИЕ СИМВОЛЫ

Цель работы : 1) Знакомство с системой обозначения граней и направлений;

2) Определение индексов граней и ребер кристаллов;

3) Решение некоторых типичных кристаллографических задач с использованием условия зональности.

Важнейшее значение в кристаллографии имеет вопрос об аналитической записи взаимного расположения граней и ребер кристалла в пространстве. С этой целью применяют кристаллографические символы, определяющие положение любой грани и ребра кристалла относительно принятых координатных осей.

Символы граней

Положение грани кристалла можно описать с помощью трех отрезков, отсекаемых этой гранью на координатных осях. Кристаллографическую систему характеризуют геометрические константы кристалл: осевые углы (a, b, g) и осевые единицы (a 0 , b 0 , c 0 ). Осевыми единицами называют отрезки a 0 , b 0 , c 0 , отсекаемые единичной гранью на координатных осях x , y , z соответственно. В соответствии с симметрией кристалла масштаб измерения отрезков, отсекаемых гранью на осях, определяется для каждой сингонии соотношением между осевыми единицами (табл. 1).

Таблица 1.

Сингония Угловые соотношения Осевые единицы
Кубическая a = b = g = 90° a0 =b0 =c0
Тетрагональная a = b = g = 90° a0 =b0 ¹ c0
Ромбическая a = b = g = 90° a0 ¹ b0 ¹ c0
Моноклинная a = g = 90°¹b a0 ¹ b0 ¹ c0
Триклинная a ¹ b ¹ g ¹ 90° a0 ¹ b0 ¹ c0
Гексагональная a = b = 90°, g =120° a0 =b0 ¹ c0

В методе параметров (метод Вейса) для определения грани используется тройка безразмерных векторов a , b , c , соответствующих отрезкам, отсекаемым гранью на координатных осях и измеренных с помощью осевых единиц a 0 , b 0 , c 0 (рис. 1) a = OA / a 0 , b = OB / b 0 , c = OC / c 0 .

Для выбора масштаба измерения, после установки кристалла, среди его наиболее развитых граней находят такую, которая пересекает все три оси. Отрезки, отсекаемые такой гранью кристалла, принимают за единичные, а саму грань - за единичную. Её параметры: (1:1:1). Чтобы определить параметры любой другой грани кристалла, необходимо найти соотношение отрезков, отсекаемых ею на координатных осях и отнесенных к соответствующим единичным отрезкам a 0 , b 0 , c 0 .

Такое обозначение граней с помощью параметров имеет один существенный недостаток: неудобство обозначения граней, параллельных координатным осям. Например, грань, параллельная плоскости XOY, запишется как (¥:¥:1), поскольку такая грань пересекает лишь ось Z. Между тем, грани параллельные координатным осям, представляют для кристаллографии особый интерес.

В методе индексов (метод Миллера) положение любой грани кристаллов в трехосной системе координат определяется тройкой целых, как правило, небольших, взаимно-простых чисел – индексовh , k , l , представляющих собой отношение обратных величин параметров. Тогда грань, параллельная плоскости XOYбудет иметь индексы h:k:l=1/¥:1/¥:1/1=0:0:1. Индексы грани заключают в круглые скобки, не разделяя их друг от друга никакими знаками. Следовательно, рассмотренная выше грань имеет символ (001).

В кристаллографической практике метод индексов Миллера получил широкое распространение. Следует иметь в виду, что параллельные грани имеют один и тот же символ, соответствующий грани ближайшей к началу координат.

Благодаря высокой симметрии кубических кристаллов, их индицирование (определение индексов всех граней) осуществляется достаточно просто. Единичная грань кубического кристалла должна составлять с координатными осями равные углы и отсекать на них равные отрезки. Легко видеть, что такой гранью может быть выбрана грань октаэдра или тетраэдра, через которую проходит поворотная ось третьего порядка.


Символы ребер

Любое направление (ребро кристалла) в данной системе координат может быть задано: 1) двумя точками, лежащими на заданном направлении, не проходящим через начало координат; 2) одной точкой, если направление проходит через эту точку и начало координат.

Если осевые единицы единичной грани равны a 0 , b 0 , c 0 , а точки А (x 1, y 1 , z 1 ) и В (x 2, y 2 , z 2 ) лежат на заданном направлении, то проекции отрезка АВ будут равны:

(AB)x =x2 -x1 , (AB)y =y2 -y1 , (AB)z =z2 -z1 .

Тогда символ направления [rst] определится как

.

Таким образом, заданное направление определяется отношением трех проекций отрезка, лежащем на этом направлении, к соответствующим осевым единицам и выражается с помощью целых взаимно простых чисел r , s , t , записываемых в квадратных скобках [rst]. В случае, когда заданное направление проходит через точку А [[000]] начала координат и точку В [[xyz]] можно записать.

Из приведенного выше правила определения символов ребер следует, что если данный отрезок АВ или данное направление перемещать в пространстве параллельно самому себе, то его символ не изменится.

Заданное направление может быть определено и с помощью углов a , b , g , которые оно образует с координатными осями x , y , z . Для отрезка АВ, лежащего на заданном направлении, можно записать:

.

В кубических кристаллах:

.

Несложные геометрические рассмотрения показывают, что для кубических кристаллов отношение направляющих косинусов нормали к грани ( h k l ) пропорционально отношению индексов:

,

отсюда:

.

Таким образом, при индицировании направлений в кубических кристаллах следует помнить, что символы направления и перпендикулярной ему грани обозначаются одинаковыми индексами. Например, направление [111] перпендикулярно грани (111), а направление [110] – грани (110).

Основные кристаллографические соотношения

1. Угол между двумя направлениями .

Чтобы найти угол между двумя направлениями [r1 , s1 , t1 ], [r2 , s2 , t2 ] необходимо вспомнить одно из правил аналитической геометрии о нахождении скалярного произведения двух векторов .

.

Если .

(Здесь - тройка единичных векторов координатной системы), то для прямоугольной системы координат имеем:

,

.

Откуда

.

2) Угол между направлением и плоскостью

Учитывая, что для кубических кристаллов перпендикуляры к плоскостям (hkl) изображаются как [h k l ], легко найти угол a между таким перпендикуляром и заданным направлением [r s t ].

Исходный угол будет дополнительным к 90°, т.е. b=(90°-a) и определится как

.

3) Условие зональности.

Кристаллографической зоной называется совокупность граней кристалла, параллельных одному направлению, называемому осью зоны. Чтобы какая-либо плоскость (hkl) принадлежала зоне, ось которой [rst] , необходимо, чтобы направление, параллельное оси зоны, лежало в этой плоскости. Следовательно, косинус угла a между перпендикуляром к заданной плоскости (hkl) и осью зоны [rst] должен быть равен нулю. При этом условие зональности для кубических кристаллов может быть записано как

.

Используя условие зональности, легко определить символ ребра [r s t ] , образованного двумя гранями (h 1 k 1 l 1 ) и (h 2 k 2 l 2 ) из совместного решения уравнений:

.

Решение данной системы уравнений можно представить в виде:

Рассмотренную задачу можно назвать нахождением символа зоны по символам граней кристалла.

Аналогичным образом решается задача о нахождении символа грани (h k l ), в которой лежат два заданных направления [r 1 s 1 t 1 ] и [r 2 s 2 t 2 ]. В этом случае решение системы уравнений

Дает индексы искомой грани (h k l ).

4) Межплоскостное расстояние и индексы плоскости.

При расчете рентгенограмм необходимо знать связь межплоскостного расстояния dс индексами (hkl) , отражающего семейства плоскостей. геометрическое рассмотрение для ортогональной системы координат дает следующие зависимости:

- для ромбической сингонии;

- для тетрагональной сингонии;

- для кубической сингонии.

План работы

1. Произвести индицирование всех граней и ребер заданных кристаллов.

2. Найти угол между двумя заданными направлениями в кристаллах кубической,. тетрагональной и ромбической сингоний при известных параметрах решетки.

3. Определить угол между двумя заданными плоскостями, направлением и плоскостью в кубических кристаллах.

4. Найти символ зоны по известным символам граней. Найти символ грани, в которой лежат два заданных направления.

5. Определить межплоскостные расстояния для заданного семейства атомных плоскостей по известным параметрам решетки в ряде кристаллов разных сингоний.

Контрольные вопросы

1. В чем сущность метода индексов?

2. Какие индексы имеют параллельные грани и ребра кристалла?

3. Как выбирается единичная грань в кубических кристаллах?

4. В чем состоит особенность индицирования направлений в кубических кристаллах?

5. Что физически собой представляет условие зональности?

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
trendlive.ru Раскрутила свои видео, сайты с помощью сервиса трендов хештегов сайта trendlive.ru
01:40:15 28 июня 2022
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита09:45:17 02 ноября 2021
.
.09:45:15 02 ноября 2021
.
.09:45:15 02 ноября 2021
.
.09:45:15 02 ноября 2021

Смотреть все комментарии (25)
Работы, похожие на Лабораторная работа: Кристаллографические символы

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте