МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
Донбасский государственный технический Университет
Кафедра прикладной механики
Динамический анализ механизмов долбежного станка
Алчевск, 2006
Схема механизма и исходные данные
Механизмы долбежного станка
Долбежный станок предназначен для долбления пазов и внутренних канавок в отверстиях. Для движения ползуна с резцом используется шестизвенный кривошипно-кулисный механизм OALBCDEP с качающейся кулисой. Кривошип 2 получает вращательное движение от электродвигателя через клинно-ременную передачу и горизонтальный одноступенчатый редуктор с цилиндрическими колесами. Вращательное движение кривошипа преобразуется в возвратно-поступательное движение ползуна 6 через качающуюся вокруг опоры С кулису 4 с камнем 3 и шатун 5. Ход ползуна Н выбирается в зависимости от длины обрабатываемой поверхности детали с учетом перебегов 0.05Н в начале и конце рабочего хода (см. диаграмму сил полезного сопротивления). Рабочий ход ползуна 6 совершается за больший промежуток времени, чем холостой ход, и соответствует большему углу поворота кривошипа.
Кинематический анализ и выбор электродвигателя
Планы положения мех – ма и силы полезного сопротивления
Выбрав масштаб построили 8–9 планов положений механизма при общем изображении стойки. Пусть ОА=35 мм, тогда
Сначала определили крайнее положение механизма перед рабочим ходом и начиная от него построили 6–8 планов положений механизма соответствующих положениям ведущего звена механизма. Определили 2-ое крайнее положение звеньев механизма и построили для него план механизма. Построили диаграмму усилий, действующее на исполнительное звено, и если необходимо, построили 2 плана положений соответствующие началу и концу действия сил полезного сопротивления.
Структурный анализ механизма
1. Выписываем кинематические пары определяя класс и вид
1–2 – вращ., 5 кл
2–3 – вращ., 5 кл
3–4 – поступ., 5 кл
4–1 – вращ., 5 кл
4–5 – вращ., 5 кл
5–6 – вращ., 5 кл
6–1 – поступ., 5 кл
2. Определяем степень подвижности
W=3n-2p5
– p4
=3*5–2*7=1
3. Строим структурную схему механизма
4. Определяем группы Ассура, определяем класс, порядок и вид
5–6 гр. Ассура, II класса, II порядка, с внешней поступательной парой
3–4 гр. Ассура, II класса, II порядка, с внутренней поступательной парой
1–2 механизм I класса
5. Определяем точки наслоения
I(1,2) – II(3,4) – III(5,6)
Весь механизм II класса.
Планы скоростей. Линейные скорости точек и угловые скорости звеньев
Построение плана скоростей
Скорость точки A
постоянна и равна:
Выбираем масштаб плана скоростей. Пусть отрезок - изобр. скорость т.А на плане скоростей. Тогда масштаб плана скоростей будет:
Вектор pv
а направлен перпендикулярно ОА
по направлению ω2.
Рассмотрим группу Ассура 3–4 (внутренняя точка А4
) и запишем систему уравнений:
VA
4
=
VA
+
VA
4А
VA
4
=
V
С
+
VA
4С
Систему решим графически. Рассмотрим первое уравнение системы: через точку a
плана скоростей проводим прямую, параллельную звену BL
(на этой прямой будет находиться VA
4А
и точка A
4
). Решаем второе уравнение.V
С
=0
, т. к. точка С
неподвижна, а значит вектор pv
с
, изображающий скорость V
С
=0
иточка С совпадает с pv
.
Через полюс плана скоростей (точки с)
проводим прямую перпендикулярную А4
C
. При пересечении двух прямых получаем положение точки а4
.
Положение точек b
, на плане скоростей определяем по теоремам подобия. Точка b
будет находиться так:
Проведём окружность радиусом а4
b
с центром в точке а4
и радиусом cb
с центром в точке c
, пересечение их является точка b
. Из полюса pv
проводим вектор в точку b
.
Точка , будет находиться на отрезке b
а4
, причём:
Точка d
будет находиться на отрезке bc
, причём:
Рассмотрим группу Ассура 5–6
(внутренняя точка Е
) и запишем систему уравнений:
V
Е
= VD
+ VED
VE
= VP
+ VEP
Систему решим графически. Рассмотрим первое уравнение системы: через точку d
плана скоростей проводим прямую (на этой прямой будет находиться VED
и точка E
).
Решаем второе уравнение.VP
=0
, т. к. точка P
неподвижна, а значит вектор pv
p
, изображающий скорость VP
=0
иточка P
совпадает с pv
.
Через полюс плана скоростей (точки p
)
проводим прямую
. При пересечении двух прямых получаем положение точки e
(
s
6
)
.
Точка будет находиться на отрезке de
(
ds
6
),
причём:
Определим истинные значения линейных скоростей точек и угловых скоростей звеньев механизма:
План скоростей рассмотрен для выделенного положения.
Аналогично строится планы скоростей для остальных положений механизма.
Результаты заносятся в таблицу скоростей точек и звеньев механизма.
Таблица 1 – Линейные скорости характерных точек и угловые скорости звеньев
Параметр |
Значение в положении |
1 |
2 |
Основное |
4 |
5 |
6 |
7 |
8 |
9 |
VА4, м/с
|
0 |
1.32 |
2.2 |
2.7 |
0.6 |
1.5 |
0 |
1.3 |
2.5 |
VB,
м/с
|
0 |
0.5 |
0.7 |
0.8 |
0.6 |
0.4 |
0 |
0.6 |
1.1 |
VD
, м/с
|
0 |
1.1 |
1.6 |
1.9 |
1.3 |
1. |
0 |
1.1 |
2.7 |
VE
, м/с
|
0 |
0.8 |
1.4 |
2 |
1.4 |
1.1 |
0 |
1.2 |
2.6 |
VS4
, м/с
|
0 |
0.7 |
1.2 |
1.2 |
0.9 |
0.7 |
0 |
0.7 |
1.8 |
VS5
, м/с
|
0 |
1 |
1.5 |
0.2 |
1.4 |
1.1 |
0 |
1.1 |
2.6 |
VL
,м/с
|
0 |
1.7 |
2.6 |
2.9 |
2.1 |
1.7 |
0 |
1.8 |
4.1 |
VA4A
,м/с
|
0 |
2.8 |
2.3 |
0.4 |
1.4 |
1.8 |
0 |
2.8 |
1.2 |
VA4C
,м/с
|
0 |
1.3 |
2.2 |
2.7 |
0.6 |
1.5 |
0 |
1.3 |
2.5 |
VED
,м/с
|
0 |
0.4 |
0.5 |
0.4 |
0.3 |
0.3 |
0 |
0.3 |
0.2 |
VEP
,м/с
|
0 |
0.8 |
1.4 |
2 |
1.4 |
1.1 |
0 |
1.2 |
2.6 |
ω4
,
с-1
|
0 |
0.2 |
0.3 |
0.4 |
0.1 |
0.2 |
0 |
0.2 |
0.5 |
ω5
,
с-1
|
0 |
1 |
1.1 |
0.8 |
0.7 |
0.6 |
0 |
0.6 |
0.4 |
5. Построение диаграммы приведенного момента сил сопротивления
Определение точки приложения и направление уравновешивающей силы (приведенной силы)
Для определения полюса зацепления в зубчатой передаче, принять радиус делительной окружности ведомого колеса 2 .
Выделить более четкими линиями один из планов механизма на рабочем ходу (где действует сила полезного сопротивления), но не крайние положения. Для этого положения пронумеровать звенья и обозначить кинематические пары и центры масс звеньев. Нумерацию планов положений начать с крайнего положения перед рабочим ходом.
Определяем радиус делительной окружности ведомого колеса
Принимаем r
2
=0,09 м
, используя масштаб , определим масштаб на плане механизма:
На плане механизма находится точка полюса зацепления (т. р0
), а также направ-ление уравновешивающей силы (приведенной силы и ее точки приложения т. В2
)
Используя теорему подобия находим положения и скорость т. В2
на планах скоростей в каждом положении:
Пара-
метры
|
Положения |
1 |
2 |
Основное |
4 |
5 |
6 |
7 |
8 |
9 |
pv
b
2
мм |
50 |
50 |
50 |
50 |
50 |
50 |
50 |
50 |
50 |
ab2
мм |
105 |
110 |
106 |
82 |
46 |
38 |
17 |
22 |
55 |
VB2
м/с |
2.2 |
2.2 |
2.2 |
2.2 |
2.2 |
2.2 |
2.2 |
2.2 |
2.2 |
Определение силы полезного сопротивления по диаграмме сил и силы тяжести звеньев в каждом положении и прикладывание его к механизму
Определяем силы тяжести:
Значение сил полезного сопротивления и сил тяжести звеньев во всех положениях механизма одинаковы, кроме 1-ого и 7-ого, где F
=0
Силы проставляются только в выделенном положении.
Согласно теоремы Жуковского «О жестком рычаге», перенести все силы из плана механизма на план скоростей повернув их на 900
в том числе .
Взять сумму моментов всех сил относительно pv
и найти величину, направление .
Уравновешивающий момент:
Поскольку приведенная сила сопротивления и приведенный момент сопротивления то имеем значения приведенных моментов сил сопротивления. Каждый момент заносим в таблицу
Таблица 3 – Приведенные значения моментов сил полезного сопротивления
Положения |
1 |
2 |
Основное |
4 |
5 |
6 |
7 |
8 |
9 |
, кНм
|
0 |
19,5 |
31,4 |
46 |
33 |
25,9 |
0 |
15,9 |
10 |
По значениям в таблице строим график на миллиметровке.
Определение мощности электродвигателя и разбивка передаточного отношения по ступеням. Определив для каждого положения строим график изменения приведенного момента сил сопротивления от функции угла поворота звена приведения по оси абсцисс, масштаб равен:
Имея зависимость определяем требуемую мощность электродвигателя, для этого находим работу сил сопротивления:
,
где S – площадь, мм2
Тогда работа движущих сил:
,
где Ag
– полезная работа механизма,
Средняя мощность движущих сил:
Требуемая мощность электродвигателя: ,
где
КПД зубчатой передачи, - цилиндрическая передача
- КПД ременной передачи,
- КПД одной пары подшипников качения,
количество пар подшипников качения
По ГОСТ 19523–81 выбираем , причем , согласно выбираем синхронную частоту вращения , процент скольжения S
. Соответственно выбрали:
=0,55 кВт, =1500 об/мин,
S
=7,3%
Определяем номинальное число оборотов электродвигателя:
Определяем передаточное число, общее:
где - передаточное число редуктора, выбираем по ГОСТ 2185–66
Up
– передаточное число ременной передачи
радиус делительной окружности шестерни
Построение диаграммы изменения кинетической энергии
Имея диаграмму сил сопротивления графически проинтегрируем ее методом хорд и получим график работы сил сопротивления . Масштаб графика получим вычисляя по формуле:
,
где масштаб
масштаб оси
Н –
полюсное расстояние при графическом интегрировании, мм
Приведенный момент движения сил для промышленных установок принимаем постоянным в течение всего цикла установившегося режима. Учитывая то обстоятельство, что за полный цикл установившегося движения работа движущих сил равна работе сил сопротивления. Соединяем 1-ую и последнюю точки в диаграмме прямой линией. Указанная прямая в положительной области представляет собой диаграмму работ движущих сил . Вычитая из ординат диаграммы соответствующие ординаты диаграммы и откладывая разность на соответствующей ординате получаем диаграмму изменения (приращения) кинетической энергии механизма
Определение истинной скорости движения звена приведения
Построение диаграммы приведенного момента инерции по уровню:
Определяем значения приведенного момента инерции в каждом положении:
Результат заносим в таблицу.
Таблица 4 – Значения приведенных моментов инерции
Положение |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|
0,15 |
0,25 |
0,43 |
0,52 |
0,39 |
0,3 |
0,15 |
0,32 |
0,86 |
По полученным значениям строим график изменения приведенного момента инерции от функции угла поворота звена приведения .
Масштаб
Построение диаграммы «Энергия – масса» (кривой Виттенбауэра) и зависимости
Исключив из графиков и аргумент φ
получим функциональную зависимость изменения приращения к кинетической энергии от приведенного момента инерции - диаграмму Виттенбауэра.
Кинетическая энергия механизма в любой момент времени можно представить в виде суммы кинетической энергии механизма в начальный момент времени и разности работ сил движущих Ag
и сил сопротивления Aс
за время соответствующее повороту звена приведения на угол φ,
т.е.
Переносим начало координат графика на расстояние соответствующее значению кинетической энергии .
В этом случае диаграмма Виттенбауэра отнесенная к новой системе координат, представляет кривую изменения кинетической энергии всего механизма функции приведенного момента инерции
Истинная скорость звена приведения в данном его положении:
(1)
Взяв на кривой произвольно выбрав точку с координатами (х, у)
и определив значение:
После подстановки в формулу (1) получим:
(2)
Полученные данные заносим в таблицу.
Таблица 5-Значения истинной скорости движения звена приведения
Положение |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|
По значениям таблицы строим диаграмму изменения истинной скорости движения звена приведения .
Из нового начала координат т. О1
касательно к диаграмме проводим
Лучи и находим лучи , тогда по формуле (2) находим ,. Угловые
Скорости звена приведения:
|