Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Парная регрессия

Название: Парная регрессия
Раздел: Рефераты по экономико-математическому моделированию
Тип: контрольная работа Добавлен 10:01:26 22 октября 2010 Похожие работы
Просмотров: 1701 Комментариев: 21 Оценило: 6 человек Средний балл: 5 Оценка: 5     Скачать

Контрольная работа

по теме: "Парная линейная регрессия"


Данные, характеризующие прибыль торговой компании "Все для себя" за первые 10 месяцев 2004 года (в тыс. руб.), даны в следующей таблице:

январь февраль март апрель май июнь июль август сентябрь октябрь
367 418 412 470 485 470 525 568 538 558

В контрольной работе с использованием табличного процессора Ехсе l необходимо выполнить следующие вычисления и построения:

1. Построить диаграмму рассеяния.

2. Убедится в наличии тенденции (тренда) в заданных значениях прибыли фирмы и возможности принятия гипотезы о линейном тренде.

3. Построить линейную парную регрессию (регрессию вида ). Вычисление коэффициентов b 0 , b 1 выполнить методом наименьших квадратов.

4. Нанести график регрессии на диаграмму рассеяния.

5. Вычислить значения статистики F и коэффициента детерминации R 2 . Проверить гипотезу о значимости построенного уравнения регрессии.

6. Вычислить выборочный коэффициент корреляции и проверить гипотезу о ненулевом его значении.

7. Вычислить оценку дисперсии случайной составляющей эконометрической модели.

8. Проверить гипотезы о значимости вычисленных коэффициентов b 0 , b 1 .

9. Построить доверительные интервалы для коэффициентов b 0 , b 1 .

10. Построить доверительные интервалы для дисперсии случайной составляющей эконометрической модели.

11. Построить доверительную область для условного математического ожидания М()( по оси Х откладывать месяцы январь - декабрь). Нанести границы этой области на диаграмму рассеяния.

12. С помощью линейной парной регрессии сделать прогноз величины прибыли на ноябрь и декабрь месяц и нанести эти значения на диаграмму рассеяния. Сопоставить эти значения с границами доверительной области для условного математического ожидания М( ) и сделать вывод о точности прогнозирования с помощью построенной регрессионной модели.

Решение.

Используя исходные данные, строим диаграмму рассеяния:

На основе анализа диаграммы рассеяния убеждаемся в наличии тенденции увеличения прибыли фирмы и выдвигаем гипотезу о линейном тренде.

Полагаем, что связь между факторами Х и У может быть описана линейной функцией. Решение задачи нахождения коэффициентов b 0 , b 1 основывается на применении метода наименьших квадратов исводится к решению системы двух линейных уравнений с двумя неизвестными b 0 , b 1 :

b 0 n + b 1 Уxi = Уyi ,

b 0 Уxi + b 1 Уxi 2 = Уxi yi .


Составляем вспомогательную таблицу:

х y x2 ху y2
1 1 367 1 367 134689
2 2 418 4 836 174724
3 3 412 9 1236 169744
4 4 470 16 1880 220900
5 5 485 25 2425 235225
6 6 470 36 2820 220900
7 7 525 49 3675 275625
8 8 568 64 4544 322624
9 9 538 81 4842 289444
10 10 558 100 5580 311364
сумма 55 4811 385 28205 2355239

Для нашей задачи система имеет вид:

Решение этой системы можно получить по правилу Крамера:

Получаем:

, .

Таким образом, искомое уравнение регрессии имеет вид:

y =364,8 + 21,145x.


4. Нанесем график регрессии на диаграмму рассеяния.

5. Вычислим значения статистики F и коэффициента детерминации R 2 . Коэффициент детерминации рассчитаем по формуле R2 = rxy 2 = 0,9522 = 0,907. Проверим адекватность модели (уравнения регрессии) в целом с помощью F-критерия. Рассчитаем значение статистики F через коэффициент детерминации R2 по формуле:

Получаем: . Зададим уровень значимости б =0,01, по таблице находим квантиль распределения Фишера F0,01;1;8 = 11,26, где 1 – число степеней свободы.

Fфакт. > F0,01;1;8 , т.к. 78,098 > 11,26.

Следовательно, делаем вывод о значимости уравнения регрессии при 99% - м уровне значимости.

6. Вычислим выборочный коэффициент корреляции и проверим гипотезу о ненулевом его значении.

Рассчитаем выборочный коэффициент корреляции по формуле:


Получаем:

Проверка существенности отличия коэффициента корреляции от нуля проводится по схеме:если , то гипотеза о существенном отличии коэффициента корреляции от нуля принимается, в противном случае отвергается.

Здесь t1-б/2, n -2 – квантиль распределения Стьюдента, б - уровень значимости или уровень доверия, n – число наблюдений, (n-2) – число степеней свободы. Значение б задается. Примем б = 0,05, тогда t1-б/2, n -2 = t0,975,8 = 2,37. Получаем:

.

Следовательно, коэффициент корреляции существенно отличается от нуля и существует сильная линейная связь между х и у.

С использованием табличного процессора Ехсеl проведем регрессионную статистику:

Вывод итогов:

Регрессионная статистика
Множественный R 0,952409
R-квадрат 0,907083
Нормированный R-квадрат 0,895468
Стандартная ошибка 21,7332
Наблюдения 10

Дисперсионный анализ
df SS MS F Значимость F
Регрессия 1 36888,245 36888,25 78,09816 2,119E-05
Остаток 8 3778,6545 472,3318
Итого 9 40666,9
Коэфф. Станд. ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y-пересечение 364,8 14,846599 24,57128 8,04E-09 330,56368 399,0363
Переменная X 1 21,14545 2,3927462 8,837316 2,12E-05 15,627772 26,66314

Вычисленные значения коэффициентов b 0 , b 1 , значения статистики F , коэффициента детерминации R 2 выборочного коэффициента корреляции rxy совпадают с выделенными в таблице.

7. Оценка дисперсии случайной составляющей эконометрической модели вычисляется по формуле .

Используя результаты регрессионной статистики, получаем:

.

8. Проверим значимость вычисленных коэффициентов b 0 , b 1 по t-критерию Стьюдента. Для этого проверяем выполнение неравенств:

и ,

где

, , , .

Используем результаты регрессионной статистики:


Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y-пересечение 364,8 14,846599 24,57128 8,04E-09 330,56368 399,0363
Переменная X 1 21,14545 2,3927462 8,837316 2,12E-05 15,627772 26,66314

Получаем: ; Примем б = 0,05, тогда t1-б/2, n -2 = t0,975,8 = 2,37.

Так как и , делаем вывод о значимости коэффициентов линейного уравнения регрессии.

9. Доверительные интервалы для коэффициентов b 0 , b 1 получаем с помощью результатов регрессионной статистики.

Доверительный интервал для коэффициента b 0 уравнения регрессии:

Доверительный интервал для коэффициента b 1 уравнения регрессии:

10. Построим доверительный интервал для дисперсии случайной составляющей эконометрической модели по формуле:

.

Примем б = 0,05, тогда по таблице для 10-элементной выборки q = 0,65.

Получаем:


,

.

11. Построим доверительную область для условного математического ожидания М().

Доверительные интервалы для уравнения линейной регрессии: находятся по формуле:

где соответственно верхняя и нижняя границы доверительного интервала; значение независимой переменной для которого определяется доверительный интервал, квантиль распределения Стьюдента, доверительная вероятность, (n-2) – число степеней свободы;

Рассмотрим уравнение: y =364,8 + 21,145x. Пусть тогда . Зная и , заполним таблицу:

1 385,95 20,25 4,634 377,327 394,564
2 407,09 12,25 5,215 397,391 416,791
3 428,24 6,25 5,738 417,564 438,908
4 449,38 2,25 6,217 437,819 460,945
5 470,53 0,25 6,661 458,138 482,917
6 491,67 0,25 7,078 478,508 504,838
7 512,82 2,25 7,471 498,921 526,715
8 533,96 6,25 7,845 519,372 548,556
9 555,11 12,25 8,202 539,854 570,365
10 576,25 20,25 8,544 560,363 592,146
сумма 82,5
11 597,4 30,25 8,873 580,897 613,903
12 618,55 42,25 9,190 601,453 635,638

График уравнения регрессии, доверительная полоса, диаграмма рассеяния:

12. С помощью линейной парной регрессии сделаем прогноз величины прибыли на ноябрь и декабрь месяц:

597,4, 618,55.

Нанесем эти значения на диаграмму рассеяния.


Эти значения сопоставимы с границами доверительной области для условного математического ожидания М( ).

Точность прогнозирования: с вероятностью 0,95 прибыль в ноябре находится в интервале (487,292; 515,508); прибыль в декабре находится в интервале (497,152; 526,376).

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита08:58:16 02 ноября 2021
.
.08:58:15 02 ноября 2021
.
.08:58:15 02 ноября 2021
.
.08:58:14 02 ноября 2021
.
.08:58:14 02 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Контрольная работа: Парная регрессия

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте