Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Имитационное структурное моделирование системы

Название: Имитационное структурное моделирование системы
Раздел: Рефераты по экономико-математическому моделированию
Тип: реферат Добавлен 09:07:08 17 апреля 2009 Похожие работы
Просмотров: 94 Комментариев: 21 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно     Скачать

Северская Государственная Технологическая Академия

Имитационное структурное моделирование системы ЭП на ЦВМ с учетом нелинейностей

Северск 200 8

Цель работы

Методом цифрового имитационного моделирования исследовать переходные процессы в элементах электропривода и автоматической системе регулирования с учетом влияния нелинейного момента нагрузки.

Структурная и функциональная схемы системы

Рис. 1 – Функциональная схема системы “ЭМУ – Д”

Рис. 2 – Структурная схема системы “ЭМУ – Д”

Технические данные

Данные для расчета представлены в таблице 1.

Таблица 1 – Данные для расчета

ЭМУ Двигатель ТГ
Еэму К1 Ту К2 Ткз Rя эму Uн I wн Rяц Тяц Тэм Ктг
В - с - с Ом В А рад/с Ом с с В×с
230 1,5 0,05 1,5 0,17 5,3 220 4,25 157 2,9 0,02 0,18 1

Нелинейная зависимость момента сопротивления механизма приведена на рис. 3.

Рис. 3 - Нелинейная зависимость момента сопротивления механизма

Краткое описание этапов и особенностей процесса моделирования

На первом этапе необходимо оценить все возможные алгоритмы функционирования системы и выбрать наиболее полно отвечающий цели моделирования. Этот этап заканчивается принятием допущений и оценкой ограничений для процесса моделирования.

Второй этап подразумевает создание математических моделей системы и окружающей среды с учетом результатов и выводов первого этапа, причем, математические модели могут содержать взаимосвязанные подсистемы и элементы.

Третий этап содержит выбор способа решения уравнений математической модели. Затем разрабатывается алгоритм решения задачи и пишется программа на выбранном языке (PASCAL).

Заключительный, четвертый этап содержит отладку программы. Ввод данных, непосредственное решение задачи, вывод и анализ результатов.

Составление математической модели для системы “ЭМУ – Д”

На схеме (рис. 2) ЭМУ представлен в виде двух апериодических звеньев с коэффициентами К1 первого и К2 второго каскадов усиления и постоянными времени Ту обмотки управления и Ткз короткозамкнутой обмотки. Структурная схема двигателя состоит из безинерционного, интегрирующего и апериодического звеньев, параметры которых определяются сопротивлением якорной цепи Rяц , электромагнитной – Тяц и электромеханической – Тэм постоянными времени, а коэффициент передачи безинерционного звена С рассчитывается по номинальным данным двигателя.

Определяем величину сигнала ошибки на входе системы:

Для получения частного решения численным методом, например, Эйлера первого порядка необходимы конечно-разностные уравнения. Удобнее всего осуществить переход от передаточной функции звена к конечно-разностному уравнению.

В результате перехода к конечно-разностным уравнениям получим уравнения для пошагового машинного решения численным методом Эйлера первого порядка для апериодических звеньев:

,

,

Находим ЭДС управления еу на втором сумматоре схемы:

.

,

Моделирование нелинейного момента сопротивления механизма из-за трудоемкости описания его дифференциальными уравнениями проведем с использованием логических зависимостей:

– при пуске:

если , то ;

, то

Определим величину суммарного тока на третьем сумматоре схемы:

.

В результате перехода к конечно-разностным уравнениям получим уравнения для пошагового машинного решения численным методом Эйлера первого порядка для интегрирующего звена:

,

Алгоритм расчета переходных процессов в системе “ЭМУ – Д”

Выражения, приведенные в пункте 5, являются исходными для составления алгоритма решения задачи, в котором предусмотрено конечное время расчета переходного процесса tпп с шагом интегрирования Dt.

Алгоритм, представленный на рис. 3, соответствует пуску ДПТ при нелинейном моменте сопротивления механизма.

Рис. 4 – Алгоритм расчета переходных процессов в системе “ЭМУ – Д”

Листинг программ расчета и графики переходных процессов

Пуск ДПТ при линейном моменте сопротивления механизма

program map;

uses graph;

var

wnom,t,eu,Uvx,Tac,inl,ic,isum,inom,ia,w,k1,k2,ktg,du,ekz,emu,dt,

tpp,rc,Tu,Tkz,c,Tem:real;

x,y,gd,gm:integer;

begin

tpp:=12;

wnom:=157;

c:=1.322;

dt:=0.001;

Uvx:=10;

k1:=1.5;

k2:=1.5;

Tu:=0.05;

Tkz:=0.17;

rc:=5.3;

inom:=4.25;

Tac:=0.02;

Tem:=0.18;

ktg:=1;

w:=0;

gd:=vga;initgraph(gd,gm,'c:\BPascal\BGI');

setlinestyle(1,0,1);setcolor(2);

for x:=0 to 9 do

line(x*70,0,x*70,199);

for y:=0 to 9 do

line(0,y*20,639,y*20);

setcolor(5);

setlinestyle(0,0,1);setcolor(6);

line(0,120,639,120);

line(70,0,70,199);

setcolor(4); outtextxy(10,10,'w,rad/sec ');

setcolor(4); outtextxy(90,10,'Isum,A');

setcolor(4); outtextxy(580,125,'t,sec');

setcolor(7); outtextxy(120,125,'1,5 3.0 4.5 6.0 7.5 9.0');

setcolor(7); outtextxy(40,100,'4,0');

setcolor(7); outtextxy(40,80,'8,0');

setcolor(7); outtextxy(40,60,'12,0');setcolor(7); outtextxy(40,40,'16,0');

ic:=0.1*inom;

while t<tpp do

begin

du:=Uvx-w*ktg;

ekz:=ekz+(k1*du-ekz)*(dt/Tu);

emu:=emu+(k2*ekz-emu)*(dt/Tkz);

eu:=emu-w*c;

ia:=ia+((eu/rc)-ia)*(dt/Tac);

isum:=ia-ic;

w:=w+((rc*isum*dt)/(c*Tem));

t:=t+dt;

putpixel(round(70+t*700/tpp),round(120-w*5),1);

putpixel(round(70+t*700/tpp),round(120-Isum*5),4);

end;

readln;

closegraph;

writeln('Pusk DPT pri lineinom momente soprotivleniya');

writeln('');

writeln('Chastota vrasheniya w=',w:6:2);

writeln('Tok yakorya ia:=',ia:4:2);

writeln('Signal oshibki dU=',ia:4:2);

writeln('EDS kz Ekz=',ekz:6:2);

writeln('EDS emu Emu=',emu:6:2);

writeln('EDS oy Ey=',eu:4:2);

writeln('isum=',isum:4:2);

readln;

end.

Пуск ДПТ при нелинейном моменте сопротивления механизма

program map;

uses graph;

var

wnom,t,eu,Uvx,Tac,inl,ic,isum,inom,ia,w,k1,k2,ktg,du,ekz,emu,dt,

tpp,rc,Tu,Tkz,c,Tem,inel:real;

x,y,gd,gm:integer;

begin

gd:=vga;initgraph(gd,gm,'c:\BPascal\BGI');

tpp:=2;

wnom:=157;

c:=1.322;

dt:=0.001;

Uvx:=10;

k1:=1.5;

k2:=1.5;

Tu:=0.05;

Tkz:=0.17;

rc:=5.3;

inom:=4.25;

Tac:=0.02;

Tem:=0.18;

ktg:=1;

w:=0;

setlinestyle(1,0,1);setcolor(2);

for x:=0 to 9 do

line(x*70,0,x*70,199);

for y:=0 to 9 do

line(0,y*20,639,y*20);

setcolor(5);

setlinestyle(0,0,1);setcolor(6);

line(0,120,639,120);

line(70,0,70,199);

setcolor(4); outtextxy(10,10,'w,rad/sec ');

setcolor(4); outtextxy(90,10,'Isum,A');

setcolor(4); outtextxy(580,125,'t,sec');

setcolor(7); outtextxy(120,125,'6,0 12.0 18.0 24.0 30.0 36.0 42.0 48.0');

ic:=0.1*inom;

while t<tpp do

begin

du:=Uvx-w*ktg;

ekz:=ekz+(k1*du-ekz)*(dt/Tu);

emu:=emu+(k2*ekz-emu)*(dt/Tkz);

eu:=emu-w*c;

if 0<w<0.5*wnom THEN inel:=(w/wnom)*2*inom; if w>0.5*wnom THEN inel:=0.5*inom;

isum:=ia-(ic+inel);

w:=w+((rc*isum*dt)/(c*Tem));

t:=t+dt;

putpixel(round(70+t*700/tpp),round(120-w*0.100),1);

putpixel(round(70+t*700/tpp),round(120-isum*9),4);

end;

readln;

closegraph;

writeln('Pusk DPT pri nelineinom momente soprotivleniya');

writeln('');

writeln('Chastota vrasheniya w=',w:6:2);

writeln('Tok yakorya ia:=',ia:4:2);

writeln('Signal oshibki dU=',ia:4:2);

writeln('EDS kz Ekz=',ekz:6:2);

writeln('EDS emu Emu=',emu:6:2);

writeln('EDS oy Ey=',eu:4:2);

writeln('isum=',isum:4:2);

readln;

end.

Результаты программы расчета переходных процессов в системе “ЭМУ-Д”

Пуск ДПТ при линейном моменте нагрузки:

W=51 с-1 , ia =0,44 А, dU=32.17 B, Ekz =48.28 B, Emu =72.55 B, Ey =1.26 B, isum =0.02 A

Пуск ДПТ при нелинейном моменте нагрузки:

W=54.4 с-1 , ia =2,20 А, dU=31.8 B, Ekz =50.78 B, Emu =81.12 B, Ey =4.86 B, isum =0.02 A

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита08:25:33 02 ноября 2021
.
.08:25:32 02 ноября 2021
.
.08:25:31 02 ноября 2021
.
.08:25:31 02 ноября 2021
.
.08:25:30 02 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Реферат: Имитационное структурное моделирование системы

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте