Содержание
Введение
1 Витамины
1.1 История открытия витаминов
1.2 Понятие и основные признаки витаминов
1.3 Обеспечение организма витаминами
2 Классификация и номенклатура витаминов
2.1 Жирорастворимые витамины
2.2 Водорастворимые витамины
2.3 Группа витаминоподобных веществ
Заключение
Список используемой литературы
Введение
Трудно представить, что такое широко известное слово как «витамин» вошло в наш лексикон только в начале XX века. Теперь известно, что в основе жизненно важных процессов обмена веществ в организме человека принимают участие витамины. Витамины — жизненно важные органические соединения, необходимые для человека и животных в ничтожных количествах, но имеющие огромное значение для нормального роста, развития и самой жизни.
Витамины обычно поступают с растительной пищей или с продуктами животного происхождения, поскольку они не синтезируются в организме человека и животных. Большинство витаминов являются предшественниками коферментов, а некоторые соединения выполняют сигнальные функции.
Суточная потребность в витаминах зависит от типа вещества, а также от возраста, пола и физиологического состояния организма. В последнее время представления о роли витаминов в организме обогатились новыми данными. Считается, что витамины могут улучшать внутреннюю среду, повышать функциональные возможности основных систем, устойчивость организма к неблагоприятным факторам.
Следовательно, витамины рассматриваются современной наукой как важное средство общей первичной профилактики болезней, повышения работоспособности, замедления процессов старения.
Целью данной работы является всестороннее изучение и характеристика витаминов.
Работа состоит из введения, двух глав, заключения и списка литературы. Общий объем работы 21 страницы.
1
Витамины
1.1 История открытия витаминов
Если заглянуть в книги, изданные в конце прошлого столетия, можно убедиться, что в то время наука о рациональном питании предусматривала включение в рацион белков, жиров, углеводов, минеральных солей и воды. Считалось, что пища, содержащая эти вещества, полностью удовлетворяет все потребности организма, и таким образом, вопрос о рациональном питании казался разрешенным. Однако наука XIX столетия находилась в противоречии многовековой практикой. Жизненный опыт населения различных стран показывал, что существует ряд болезней, связанных с питанием и встречающихся часто среди людей, в пище которых не отмечалось недостатка белков, жиров, углеводов и минеральных солей.
Врачи-практики давно предполагали, что существует прямая связь между возникновением некоторых болезней (например, цинги, рахита, бери-бери, пеллагры) и характером питания. Что же привело к открытию витаминов – этих веществ, обладающих чудесными свойствами предупреждать и излечивать тяжелые болезни качественной пищевой недостаточности?
Начало изучения витаминов было положено русским врачом Н.И.Луниным, который еще в 1888 г. установил, что для нормального роста и развития животного организма, кроме белков, жиров, углеводов, воды и минеральных веществ, необходимы еще какие-то, пока неизвестные науке вещества, отсутствие которых приводит организм к гибели.
Доказательство существования витаминов завершилось работой польского учёного Казимира Функа, который в 1912 г. выделил из рисовых отрубей вещество, излечивающее паралич голубей, питавшихся только полированным рисом (бери-бери – так называли это заболевание у людей стран Юго-Восточной Азии, где население питается преимущественно одним рисом). Химический анализ выделенного К.Функом вещества показал, что в его состав входит азот. Открытое им вещество Функ назвал витамином (от слов «вита» – жизнь и «амин» – содержащий азот).
Правда, потом оказалось, что не все витамины содержат азот, но старое название этих веществ осталось. В наши дни принято обозначать витамины их химическими названиями: ретинол, тиамин, аскорбиновая кислота, никотинамид, – соответственно А, В, С, РР.
1.2 Понятие и основные признаки витаминов
С точки зрения химии, витамины
- это группа низкомолекулярных веществ различной химической природы, обладающих выраженной биологической активностью и необходимых для роста, развития и размножения организма.
Витамины образуются путем биосинтеза в растительных клетках и тканях. Обычно в растениях они находятся не в активной, но высокоорганизованной форме, которая, по данным исследований, наиболее подходит человеческому организму, а именно – в виде провитаминов. Их роль сводится к полному, экономичному и правильному использованию основных питательных веществ, при котором органические вещества пищи высвобождают необходимую энергию.
Только немногие из витаминов, такие, как A, D, Е, В12, могут накапливаться в организме. Недостаток витаминов вызывает тяжелые расстройства.
Основные
признаки
витаминов:
- содержатся в пище в незначительных количествах (микро-компоненты);
- либо не синтезируются в организме вообще, либо синтезируются в незначительных количествах микрофлорой кишечника;
- не выполняют пластических функций;
- не являются источниками энергии;
- являются кофакторами многих ферментативных систем;
- оказывают биологическое действие в малых концентрациях и влияют на все обменные процессы в организме, требуются организму в очень небольших количествах: от нескольких мкг до нескольких мг в день..
Известны разные степени необеспеченности
организма
витаминами:
авитаминозы
- полное истощение запасов витаминов;
гиповитаминозы
- резкое снижение обеспеченности тем или иным витамином;
гипервитаминозы
- избыток витаминов в организме.
Вредны все крайности: как недостаток, так и избыток витаминов, так как при избыточном потреблении витаминов развивается отравление (интоксикация). Явление гипервитаминоза касается лишь витаминов А и D, избыточное количество большинства других витаминов быстро выводится из организма с мочой. Но есть еще так называемая субнормальная обеспеченность, которая связана с дефицитом витаминов и проявляется она в нарушении обменных процессов в органах и тканях, но без явных клинических признаков (например, без видимых изменений в состоянии кожи, волос и других внешних проявлений). Если такая ситуация регулярно повторяется по разным причинам, то это может привести гипо- или авитаминозу.
1.3 Обеспечение организма витаминами
При нормальном питании суточная потребность организма в витаминах удовлетворяется полностью. Недостаточное, неполноценное питание или нарушение процессов усвоения и использования витаминов могут быть причиной различных форм витаминной недостаточности.
Причины истощения запасов витаминов
в организме:
1) Качество продуктов и их приготовление:
- несоблюдение условий хранения по времени и температуре;
- нерациональная кулинарная обработка (например, длительная варка мелко нарезанных овощей);
- присутствие антивитаминных факторов в продуктах питания (капуста, тыква, петрушка, зеленый лук, яблоки содержат ряд ферментов, разрушающих витамин С, особенно при мелкой резке)
- разрушение витаминов под влиянием ультрафиолетовых лучей, кислорода воздуха (например, витамина А).
2) Важная роль в обеспечении организма рядом витаминов принадлежит микрофлоре пищеварительного тракта:
- при многих распространенных хронических заболеваниях нарушается всасывание или усвоение витаминов;
- сильные кишечные расстройства, неправильный прием антибиотиков и сульфаниламидных препаратов приводят к созданию определенного дефицита витаминов, которые могут синтезироваться полезной микрофлорой кишечника (витамины В12, В6,, Н (биотин)).
Суточная потребность в витаминах и их основные функции
Витамин |
Суточная
потребность
|
Функции |
Основные источники |
Аскорбиновая кислота (С) |
50-100 мг |
Участвует в окислительно-вос-становительных процессах, повы-шает сопротивляемость организма к экстремальным воздействиям |
Овощи, фрукты, ягоды. В капусте - 50 мг. В шиповнике - 30-2000 мг. |
Тиамин, аневрин (В1) |
1,4-2,4 мг |
Необходим для нормальной деятельности центральной и периферической нервной системы |
Пшеничный и ржаной хлеб, крупы – овсяная, горох, свинина, дрожжи, кишечная микрофлора. |
Рибофлавин (В2) |
1,5-3,0 мг |
Участвует в окислительно-восстановительных реакциях |
Молоко, творог, сыр, яй-цо, хлеб, печень, овощи, фрукты, дрожжи. |
Пиридоксин (В6) |
2,0-2,2 мг |
Участвует в синтезе и метаболиз-ме аминокислот, жирных кислот и ненасыщенных липидов |
Рыба, фасоль, пшено, картофель |
Никотиновая кислота (РР) |
15,0-25,0 мг |
Участвует в окислительно-восста-новительных реакциях в клетках. Недостаточность вызывает пеллагру |
Печень, почки, говядина, свинина, баранина, рыба, хлеб, крупы, дрожжи, кишечная микрофлора |
Фолиевая кислота, фолицин (Вс) |
0,2-0,5 мг |
Кроветворный фактор, участвует в синтезе аминокислот, нуклеиновых кислот |
Петрушка, салат, шпи-нат, творог, хлеб, печень |
Цианкобаламин ( В12) |
2-5 мг |
Участвует в биосинтезе нуклеино-вых кислот, фактор кроветворения |
Печень, почки, рыба, говядина, молоко, сыр |
Биотин (Н) |
0,1-0,3 мг |
Участвует в реакциях обмена аминокислот, липидов, углеводов, нуклеиновых кислот |
Овсяная крупа, горох, яйцо, молоко, мясо, печень |
Пантотеновая кислота (В3) |
5-10 мг |
Участвует в реакциях обмена белков, липидов, углеводов |
Печень, почки, гречка, рис, овес, яйца, дрожжи, горох, молоко, кишечная микрофлора |
Ретинол (А) |
0,5-2.5 мг |
Участвует в деятельности мемб-ран клеток. Необходим для роста и развития человека, для функцио-нирования слизистых оболочек. Участвует в процессе фоторецепции - восприятии света |
Рыбий жир, печень трески, молоко, яйца, сливочное масло |
Кальциферол (D) |
2,5-10 мкг |
Регуляция содержания кальция и фосфора в крови, минерализация костей, зубов |
Рыбий жир, печень, молоко, яйца
|
В настоящее время известны около 13 витаминов, которые вместе с белками, жирами и углеводами должны присутствовать в рационе людей и животных для обеспечения нормальной жизнедеятельности витаминов. Кроме того, существует группа витаминоподобных веществ
, которые обладают всеми свойствами витаминов, но не являются строго обязательными компонентами пищи.
Соединения, которые не являются витаминами, но могут служить предшественниками их образования в организме, называются провитаминами
. К ним относятся, например, каротины, расщепляющиеся в организме с образованием витамина А, некоторые стерины (эргостерин, 7-дегидрохолестерин и др.), превращающиеся в витамин D.
Ряд витаминов представлен не одним, а несколькими соединениями, обладающими сходной биологической активностью (витамеры), например витамин В6 включает пиридоксин, пиридоксаль и пиридоксамин. Для обозначения подобных групп родственные соединения используют слово «витамин» с буквенными обозначениями (витамин А, витамин Е и т.п.).
Для индивидуальных соединений, обладающих витаминной активностью, используются рациональные названия, отражающие их химическую природу, например ретиналь (альдегидная форма витамина А), эргокальциферол и холекалыдиферол (формы витамина D).
Таким образом, наряду с жирами, белками, углеводами и минеральными солями, необходимый комплекс для поддержания жизнедеятельности человека включает пятый, равноценный по своей значимости компонент - витамины. Витамины принимают самое непосредственное и активное участие во всех обменных процессах жизнедеятельности организма, а также входят в состав многих ферментов, выполняя роль катализаторов.
2 Классификация и номенклатура витаминов
Так как к витаминам относится группа веществ различной химической природы, то классификация их по химическому строению сложна. Поэтому классификация проводится по растворимости в воде или органических растворителях. В соответствие с этим витамины делятся на водорастворимые и жирорастворимые.
1) К водорастворимым витаминам
относят:
B1 (тиамин) антиневритный;
B2 (рибофлавин) антидерматитный;
B3 (пантотеновая кислота) антидерматитный;
B6 (пиридоксин, пиридоксаль, пиридоксамин) антидерматитный;
B9 (фолиевая кислота; фолацин) антианемический;
B12 (цианкобаламин) антианемический;
PP (никотиновая кислота; ниацин) антипеллагрический;
H (биотин) антидерматитный;
C (аскорбиновая кислота) антицинготный – участвуют в структуре и функционировании ферментов.
2) К жирорастворимым витаминам
относят:
А (ретинол) антиксерофтальмический;
D (кальциферолы) антирахитический;
E (токоферолы) антистерильный;
К (нафтохинолы) антигеморрагический;
Жирорастворимые витамины входят в структуру мембранных систем, обеспечивая их оптимальное функциональное состояние.
В химическом отношении жирорастворимые витамины А, D, E и К относятся к изопреноидам.
3) следующая группа: витаминоподобные вещества.
К ним обычно относят витамины:В13 (оротовая кислота), В15 (пангамовая кислота), В4 (холин), В8 (инозитол), Вт (карнитин), H1 (параминбензойная кислота), F (полинасыщенные жирные кислоты), U (S=метилметионин-сульфат-хлорид).
Номенклатура
(название) основана на использовании заглавных букв латинского алфавита с нижним цифровым индексом. Кроме того, в названии используются наименования, отражающие химическую природу и функцию витамина.
Витамины стали известны человечеству не сразу, и в течение многих лет ученым удавалось открывать новые виды витаминов, а также новые свойства этих полезных для человеческого организма веществ. Поскольку языком медицины во всем мире является Латынь, то и витамины обозначались именно латинскими буквами, а в дальнейшем и цифрами.
Присвоение витаминам не только букв, но и цифр объясняется тем, что витамины приобретали новые свойства, обозначить которые при помощи цифр в названии витамина, представлялось наиболее простым и удобным. Для примера, можно рассмотреть популярный витамин «В». Так, на сегодняшний день, этот витамин может быть представлен в самых разных областях, и во избежание путаницы он именуется от «витамин В1» и вплоть до «витамина В14». Аналогично именуются и витамины входящие в эту группу, например, «витамины группы В».
Когда химическая структура витаминов была определена окончательно, стало возможным именовать витамины в соответствии с терминологией, принятой в современной химии. Так в обиход вошли такие названия, как пиридоксаль, рибофлавин, а также птероилглутаминовая кислота. Прошло еще какое то время, и стало совершенно ясно, что многие органические вещества, уже давным-давно известные науке, также обладают свойствами витаминов. Причем таких веществ оказалось достаточно много. Из наиболее распространенных можно упомянуть никотинамид, лгезоинозит, ксантоптерин, катехин, гесперетин, кверцетин, рутин, а также ряд кислот, в частности, никотиновую, арахидоновую, линоленовую, линолевую, и некоторые другие кислоты.
Далее более подробно рассмотрим сведения о биологической роли тех витаминов, механизм действия которых уже расшифрован.
2.1 Жирорастворимые витамины
Витамин А (ретинол)
является предшественником группы «ретиноидов
», к которой принадлежат ретиналь
и ретиноевая
кислота. Ретинол образуется при окислительном расщеплении провитамина β-каротина.
Ретиноиды содержатся в животных продуктах, а β-каротин — в свежих фруктах и овощах (в особенности в моркови). Ретиналь обуславливает окраску зрительного пигмента родопсина. Ретиноевая кислота выполняет функции ростового фактора.
Рисунок 2 – Жирорастворимые витамины
При недостатке витамина А развиваются ночная («куриная») слепота, ксерофтальмия (сухость роговой оболочки глаз), наблюдается нарушение роста.
Витамин D (кальциферол)
при гидроксилировании в печени и почках образует гормон кальцитриол
(1α,25-дигидроксихолекальциферол). Вместе с двумя другими гормонами (паратгормоном, или паратирином, и кальцитонином) кальцитриол принимает участие в регуляции метаболизма кальция. Кальциферол образуется из предшественника 7-дегидрохолестерина, присутствующего в коже человека и животных, при облучении ультрафиолетовым светом.
Если УФ-облучение кожи недостаточно или витамин D отсутствует в пищевых продуктах, развивается витаминная недостаточность и, как следствие, рахит
у детей, остеомаляция
(размягчение костей) у взрослых. В обоих случаях нарушается процесс минерализации (включения кальция) костной ткани.
Витамин Ε
включает токоферол
и группу родственных соединений с хромановым циклом. Такие соединения содержатся только в растениях, особенно их много в проростках пшеницы. Для ненасыщенных липидов эти вещества являются эффективными антиоксидантами.
Витамин К
— общее название группы веществ, включающей филлохинон
и родственные соединения с модифицированной боковой цепью. Недостаток витамина К наблюдается довольно редко, так как эти вещества вырабатываются микрофлорой кишечника. Витамин К принимает участие в карбоксилировании остатков глютаминовой кислоты белков плазмы крови, что важно для нормализации или ускорения процесса свертывания крови. Процесс ингибируется антагонистами витамина К (например, производными кумарина), что находит применение как один из методов лечения тромбозов.
2.2 Водорастворимые витамины
Витамин B1 (тиамин)
построен из двух циклических систем — пиримидина
(шестичленный ароматический цикл с двумя атомами азота) и тиазола (пятичленный ароматический цикл, включающий атомы азота и серы), соединенных метиленовой группой. Активной формой витамина Β1 является тиаминдифосфат
(ТРР), выполняющий функцию кофермента при переносе гидроксиалкильных групп («активированных альдегидов»), например, в реакции окислительного декарбоксилирования α-кетокислот, а также в транскетолазной реакций гексозомонофосфатного пути. При недостатке витамина Β1 развивается болезнь бери-бери
, признаками которой являются расстройства нервной системы (полиневриты), сердечнососудистые заболевания и мышечная атрофия.
Витамин B2
— комплекс витаминов, включающий рибофлавин, фолиевую, никотиновую и пантотеновую кислоты. Рибофлавин
служит структурным элементом простетических групп флавинмононуклеотида [ФМН (FMN)] и флавинадениндинуклеотида [ФАД (FAD)]. ФМН
и ФАД
являются простетическими группами многочисленных оксидоредуктаз (дегидрогеназ), где выполняют функцию переносчиков водорода (в виде гидрид-ионов).
Молекула фолиевой кислоты
(витамин B9, витамин Вc, фолацин, фолат) включает три структурных фрагмента: производное птеридина, 4-аминобензоат
и один или несколько остатков глутаминовой кислоты.
Продукт восстановления фолиевой кислоты — тетрагидрофолиевая (фолиновая) кислота [ТГФ (THF)] — входит в состав ферментов, осуществляющих перенос одноуглеродных фрагментов (С1-метаболизм).
Рисунок 2 – Жирорастворимые витамины
Дефицит фолиевой кислоты встречается довольно часто. Первым признаком дефицита является нарушение эритропоэза (мегалобластическая анемия).
При этом тормозятся синтез нуклеопротеидов и созревание клеток, появляются аномальные предшественники эритроцитов — мегалоциты. При остром недостатке фолиевой кислоты развивается генерализованное поражение тканей, связанное с нарушением синтеза липидов и обмена аминокислот.
В отличие от человека и животных микрοорганизмы способны синтезировать фолиевую кислоту de novo
. Потому рост микроорганизмов подавляется сульфаниламидными препаратами,
которые как конкурентные ингибиторы блокируют включение 4-аминобензойной кислоты в биосинтез фолиевой кислоты. Сульфаниламидные препараты не могут оказывать воздействия на метаболизм жинотных организмов, поскольку они не способны синтезировать фолиевую кислоту.
Никотиновая кислота
(ниацин) и никотинамид
(ниацинамид) (оба известны как витамин Β5, витамин РР) необходимы для биосинтеза двух коферментов — никотинамидадениндинуклеотида [НАД+
(NAD+)] и никотинамидадениндинуклеотидфосфата [НАДФ+
(NADP+)]. Главная функция этих соединений, состоящая в переносе гидрид-ионов (восстановительных эквивалентов), обсуждается в разделе, посвященном метаболическим процессам. В животных организмах никотиновая кислота может синтезироваться из триптофана
, однако биосинтез идет с низким выходом. Поэтому витаминный дефицит наступает лишь в том случае, если в рационе одновременно отсутствуют все три вещества: никотиновая кислота, никотинамид и триптофан. Заболевания. связанные с дефицитом ниацина, проД являются поражением кожи (пеллагра
), расстройством желудка и депрессией.
Пантотеновая кислота
(витамин B3) представляет собой амид α,γ-дигидрокси-β,β-диметилмасляной кислоты (пантоевой кислоты) и β-аланина. Соединение необходимо для биосинтеза кофермента А
[КоА (СоА)] принимающего участие в метаболизме мнотих карбоновых кислот. Пантотеновая кислота также входит в состав простетической группы ацилпереносящего белка
(АПБ). Поскольку пантотеновая кислота входит в состав многих пищевых продуктов, авитаминоз из-за дефицита витамина В3 встречается редко.
Витамин В6
— групповое название трех производных пиридина: пиридоксаля, пиридоксина
и пиридоксамина
. На схеме приведена формула иридоксаля, где в положении при С-4 стоит альдегидная группа (-СНО); в пиридоксине это место занимает спиртовая группа (-CH2OH); а в пиридоксамине — метиламиногруппа (-CH2NН2). Активной формой витамина В6 является пиридоксаль-5-фосфат
(PLP), важнейший кофермент в метаболизме аминокислот. Пиридоксальфосфат входит также в состав гликоген-фосфорилазы,
принимающей участие в расщеплении гликогена. Дефицит витамина В6 встречается редко.
Рисунок 2 – Жирорастворимые витамины
Витамин В12
(кобаламины;
лекарственная форма — цианокобаламин
) - комплексное соединение, имеющее в основе цикл коррина
и содержащее координационно связанный ион кобальта. Этот витамин синтезируется лишь в микроорганизмах. Из пищевых продуктов он содержится в печени, мясе, яйцах, молоке и полностью отсутствует в растительной пище (на заметку вегетарианцам!). Витамин всасывается слизистой желудка только в присутствии секретируемого (эндогенного) гликопротеина, так называемого внутреннего фактора.
Назначение этого мукопротеида заключается в связывании цианокобаламина и тем самым в защите от деградации. В крови цианокобаламин также связывается специальным белком, транскобаламином.
В организме витамин В12 запасается в печени.
Рисунок 2 – Жирорастворимые витамины
Производные цианокобаламина являются коферментами, принимающими участие, например, в конверсии метилмалонил-КоА в сукцинил-КоА, биосинтезе метионина из гомоцистеина. Производные цианокобаламина принимают участие в восстановлении рибонуклеотидов бактериями до дезоксирибонуклеотидов.
Витаминный дефицит или нарушение всасывания витамина В12 связаны главным образом с прекращением секреции внутреннего фактора. Следствием авитаминоза является пернициозная анемия.
Витамин С (L-аскорбиновая кислота)
представляет собой γ-лактон 2,3-дегидрогулоновой кислоты. Обе гидроксильные группы имеют кислотный характер, в связи с чем при потере протона соединение может существовать в форме аскорбат-аниона
. Ежедневное поступление аскорбиновой кислоты необходимо человеку, приматам и морским свинкам, поскольку у этих видов отсутствует фермент гулонолактон-оксидаза
(КФ 1.1.3.8), катализирующий последнюю стадию конверсии глюкозы в аскорбат.
Источником витамина С являются свежие фрукты и овощи. Аскорбиновую кислоту добавляют во многие напитки и пищевые продукты в качестве антиоксиданта и вкусовой добавки. Витамин С медленно разрушается в воде. Аскорбиновая кислота в качестве сильного восстановителя принимает участие во многих реакциях (главным образом в реакциях гидроксилирования).
Из биохимических процессов с участием аскорбиновой кислоты следует упомянуть синтез коллагена, деградацию тирозина,
синтезы катехоламина
и желчных кислот.
Суточная потребность в аскорбиновой кислоте составляет 60 мг — величина, не характерная для витаминов. Сегодня дефицит витамина С встречается редко. Дефицит проявляется спустя несколько месяцев в форме цинги (скорбута). Следствием заболевания являются атрофия соединительных тканей, расстройство системы кроветворения, выпадение зубов.
Витамин H (биотин)
содержится в печени, яичном желтке и других пищевых продуктах; кроме того, он синтезируется микрофлорой кишечника. В организме биотин (через ε-аминогруппу остатка лизина) связан с ферментами, например с пируваткарбоксилазой
(КФ 6.4.1.1), катализирующими реакцию карбоксилирования. При переносе карбоксильной группы два N-атома молекулы биотина в АТФ-зависимой реакции связывают молекулу СО2 и переносят ее на акцептор. Биотин с высоким сродством (Kd = 10 - 15 М) и специфичностью связывается авидином
белка куриного яйца. Так как авидин при кипячении денатурируется, дефицит витамина H может наступить только при употреблении в пищу сырых яиц.
2.3 Группа витаминоподобных веществ
Помимо вышеназванных двух главных групп витаминов, выделяют группу разнообразных химических веществ, из которых часть синтезируется в организме, но обладает витаминными свойствами. Организму они необходимы в сравнительно малых количествах, но воздействие на функции организма достаточно сильное. К ним относятся:
- Незаменимые пищевые вещества с пластической функцией: холин, инозит.
- Биологически активные вещества, синтезируемые в организме человека: липоевая кислота, оротовая кислота, карнитин.
- Фармакологически активные вещества пищи: биофлавоноиды, витамин U – метилметионинсульфоний, витамин В15 - пангамовая кислота, факторы роста микроорганизмов, парааминобензойная кислота.
Недавно открыт еще один фактор, названный пирролохинолинохиноном. Известны его коферментные и кофакторные свойства, однако пока не раскрыты витаминные свойства.
Основное отличие витаминоподобных веществ в том, что при их недостатке или переизбытке не возникает в организме различных патологических изменений, характерных для авитаминозов. Содержание витаминоподобных веществ в продуктах питания вполне достаточно для жизнедеятельности здорового организма.
Для современного человека, необходимо знать и о предшественниках витаминов. Источником витаминов, как известно, являются продукты растительного и животного происхождения. Например, витамин А в готовом виде содержится только в продуктах животного происхождения (рыбий жир, цельное молоко и т.д.), а в растительных продуктах только в виде каротиноидов - своих предшественников. Поэтому, поедая морковку мы получаем только предшественника витамина А, из которого в печени вырабатывается сам витамин А. К провитаминам относятся: каротиноиды (основной из них - каротин) - предшественник витамина А; стерины (эргостерин, 7-дегидрохолестерин и др.) - предшественники витамина D;
Заключение
Итак, из истории витаминов мы знаем, что термин «витамин» впервые был использован для обозначения специфического компонента пищи, который предотвращал болезнь Бери-бери, распространенную в странах, где употребляли в пищу много шлифованного риса. Поскольку этот компонент обладал свойствами амина, польский биохимик К.Функ впервые выделивший это вещество, назвал его витамин
- необходимый для жизни амин.
В настоящее время витамины
можно охарактеризовать как низкомолекулярные органические соединения, которые, являясь необходимой составной частью пищи, присутствуют в ней в чрезвычайно малых количествах по сравнению с основными её компонентами. Витамины
- это вещества, обеспечивающее нормальное течение биохимических и физиологических процессов в организме. Витамины
- необходимый элемент пищи для человека и ряда живых организмов, т.к. не синтезируются или некоторые из них синтезируются в недостаточном количестве данным организмом.
Первоисточником
витаминов являются растения, где преимущественно они образуются, а также провитамины - вещества, из которых витамины могут образовываться в организме. Человек получает витамины или непосредственно из растений, или косвенно - через животные продукты, в которых витамины были накоплены из растительной пищи во время жизни животного.
Витамины делят на две большие группы: витамины растворимые в жирах и витамины, растворимые в воде.
В классификации витаминов, помимо буквенного обозначения, в скобках указывается основной биологический эффект, иногда с приставкой «анти», указывающей на способность данного витамина предотвращать или устранять развитие соответствующего заболевания.
К витаминам, растворимых в жирах
относят:Витамин A (антиксерофталический), Витамин D (антирахитический), Витамин E (витамин размножения), Витамин K (антигеморрагический)\
К витаминам, растворимых в воде
относят: Витамин В1 (антиневритный), Витамин В2 (рибофлавин), Витамин PP (антипеллагрический), Витамин В6 (антидермитный), Пантотен (антидерматитный фактор), Биотит (витамин Н, фактор роста для грибков, дрожжей и бактерий, антисеборейный), Инозит. Парааминобензойная кислота (фактор роста бактерий и фактор пигментации), Фолиевая кислота (антианемический витамин, витамин роста для цыплят и бактерий), Витамин В12 (антианемический витамин), Витамин В15 (пангамовая кислота), Витамин С (антискорбутный), Витамин Р (витамин проницаемости).
Основной особенностью
жирорастворимых витаминов
является их способность накапливаться в организме так сказать «про запас». Хранится в организме они могут в течении года и расходоваться по мере надобности. Однако слишком большое поступление жирорастворимых витаминов
для организма опасно, и может привести к нежелательным последствиям. Водорастворимые витамины
не накапливаются в организме и в случае переизбытка легко выводятся с мочой.
Наряду с витаминами, существуют вещества, дефицит которых, в отличие от витаминов, не приводит к явно выраженным нарушениям. Эти вещества относятся к так называемым витаминоподобным веществам
:
Сегодня известно 13 низкомолекулярных органических соединений, которые относят к витаминам. Соединения, которые не являются витаминами, но могут служить предшественниками их образования в организме, называются провитаминами
. Важнейшим провитамином является предшественник витамина А - бета-каротин.
Значение витаминов для организма человека очень велико. Эти питательные вещества поддерживают работу абсолютно всех органов и всего организма в целом. Нехватка витаминов приводит к общему ухудшению состояния здоровья человека, а не отдельных его органов.
Болезни, которые возникают вследствие отсутствия в пище тех или иных витаминов, стали называться авитаминозами
. Если болезнь возникает вследствие отсутствия нескольких витаминов, ее называют поливитаминозом
. Чаще приходится иметь дело с относительным недостатком какого-либо витамина; такое заболевание называется гиповитаминозом
. Если своевременно поставлен диагноз, то авитаминозы и особенно гиповитаминозы легко излечить введением в организм соответствующих витаминов. Чрезмерное введение в организм некоторых витаминов может вызвать гипервитаминоз
.
Список использованных источников
1. Березов, Т.Т. Биологическая химия: Учебник / Т.Т.Березов, Б.Ф.Коровкин. - М.: Медицина, 2000. - 704 с.
2. Габриелян, О.С. Химия. 10 класс: Учебник (базовый уровень) / О.С.Габриелян, Ф.Н.Маскаев, С.Ю.Пономарев и др. - М.: Дрофа.- 304 с.
3. Мануйлов А.В. Основы химии. Электронный учебник / А.В.Мануйлов, В.И.Родионов. [Электронный ресурс]. Режим доступа: http://www.hemi.nsu.ru/
4. Химическая энциклопедия [Электронный ресурс]. Режим доступа: http://www.xumuk.ru/encyklopedia/776.html
|